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Summary

Experimental work on this project over the last four years has resulted in establishing

processing and characterization techniques for producing both the Bi-based and Tl-based

superconductors in their high temperature (2223) forms. In the bulk, dry pressed form,

maximum critical temperatures (Tc) of 108.2K and 117.8K, respectively, were measured.

Results have further shown that the Bi and Tl-based superconducting materials in bulk

form are noticeably different from the Y-based 123 material in that superconductivity is

considerably harder to achieve, maintain and reproduce. This is due primarily to the

difficulty in obtaining the higher Tc phase in pure form since it commonly co-exists with

other undesirable, lower Tc phases. In particular, it has been found that long processing

times for calcining and firing (20 - 200 hrs.) and close control of temperatures which are

very near the melting point are required in order to obtain higher proportions of the

desirable, high Tc (2223) phase.

Thus far, the BSCCO bulk materials has been prepared in uniaxially pressed, hot

pressed and tapecast form. The uniaxially pressed material has been synthesized by the

mixed oxide, coprecipitation and melt quenching processes. The tapecast and hot

pressed materials have been prepared via the mixed oxide process. In addition, thick

films of BSCCO (2223 phase) have been prepared by screen printing on to yttria and

magnesia stabilized zirconia with only moderate success; i.e., superconductivity was
achieved in these thick films, but the highest Tc obtained in these films was 89.0K.

The Tc's of the bulk hot pressed, tapecast and screen printed thick film materials were

found to be 108.2, 102.4 and 89.0K, respectively.

When synthesizing both the mixed oxide and coprecipitated thick film materials,

which includes tapecasting, the best results occurred when the materials were sintered

under low oxygen atmosphere because the films could be sintered longer and became

more dense. This allowed a larger percentage of the 2223 phase to form. The BSCCO

thick films printed on MgO substrates and fired at 845°C for 1 hour had the highest Tc

of 89.0K. The Jc's for all films were very low. This could be increased by making

denser, single phase films. A MgO buffer layer improved the electrical properties of the

BSCCO thick films, and the MSZ substrate was found to be the best material for this

work. The coprecipitated powder was preferred over the mixed oxide powder because a

larger percentage of the 2223 phase could be formed in a much smaller amount of time.

Compositional and processing investigations were carried out on the Tl-based

superconductors. Manganese and lithium additions and sintering temperature and time
were examined to determine their influence on superconducting properties. It was found

that lithium substitutions for copper enhance the transition temperatures while

manganese additions produced deleterious effects on the superconducting properties.

Research on thin film T1 and Bi-containing superconductors included preliminary

investigations into thick films produced via the acetate dip coat process and

dielectrophoretic deposition of bismuth containing superconducting films on silver



substrates. Of these two coating techniques,it appearsdielectrophoretic deposition is a
novel technique that has the potential of developing superconductorcoatingswith
preferred orientation.

Acetate dip coating produced 2223TBCCO superconductorthick films when fired at
600°Cfor 30 minutes. Using this low temperature firing method, encapsulation is not
neededto contain the volatile thallium. It appearsthicker films produce a greater
proportion of the 2223phase.

Dielectrophoretic depositionswere produced on silver wires. In this technique, high
voltage is applied between two electrodeswhich are immersed in a suspensionof
superconductingpowdersand an insulating fluid. A non-uniform field is set up when a

voltage is applied to a wire electrode that is surrounded by a cylindrical counter

electrode. If the particle possesses a relatively high permittivity compared to the

suspending fluid, a dipole is created in the particle. The particle is then drawn to the

wire electrode due to the attraction of the dipole to the greater field intensity. Results

of dielectrophoresis depositions suggest that superconductor films may be produced with
particle orientation.

Both the Bi and Tl-based superconductors prepared by tapecasting were fabricated

into SAFIRE-type grounding links. These links were similar in configuration to the

Y-based 123 superconductor grounding straps produced in previous work for NASA.



I. Introduction

This report details work that wascarried out over the period from February, 1990
thru February, 1994,in the Ceramic Engineering Department of ClemsonUniversity
under NASA contract No. NAG-1-1108. The work describedin this report coversthe
four-year program involving the developmentof high Tc superconductingcircuit elements
in the Bi-Sr-Ca-Cu-O and T1-Ba-Ca-Cu-Ocompositional systems. This effort is intended
to build on the resultsof the previouscontract (NAG-I-820) which involved the
developmentof the YBa2Cu307.z (123) material in circuit elements;and more specifically,
a superconductinggrounding link for the SAFIRE (Spectroscopyof the Atmosphere
using Far Infra-Red Emission) program.

The technology developedfor the SAFIRE grounding link involvesa rigid-structure
approachto superconductingelementsrather than the flexible-wire idea promoted by
most other institutions. In principle, the rigid-structure concept is quite simple and is
tailor-made to take advantageof the inherent desirable properties of the superconducting
ceramicswhile at the sametime recognizingthe low strength and basic brittleness of
thesematerials. This is accomplishedby pre-forming, sintering and testing the ceramic
superconductorprior to bonding it to a rigid supporting substratewhich is then totally
encapsulatedfor further support and environmental protection. This approach has the
advantagesof (1) pre-testingof the superconductingmaterial separatefrom the
substrate, (2) optimization of the developmentof superconductivityin the ceramic
without temperature limitations imposedby the substrate, (3) wider selection of substrate
materials sincethe high temperature processingstep precedesmounting of the
superconductorto the printed circuit board, (4) freedom from firing shrinkage and other

material compatibility problems and (5) high anticipated reliability because of its

simplicity, rigid design and total encapsulation from the environment.

The report is presented in two parts; i.e., Part I dealing with the Bi-based materials

and Part II covering work on the Tl-based materials.
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I. Objectives

The objectives of this work were to (1) develop and demonstrate the feasibility of

producing superconducting powders in the Y and Bi-based systems and fabricate these

materials into rigidly supported, environmentally protected superconducting circuit elements

such as conductors, coils, connectors and crossovers on dielectric substrates for

microelectronic applications, (2) develop a reliable and reproducible mixed oxide or chemical

coprecipitation process for producing Y and Bi-based superconductors, (3) Investigate

various techniques such as melt quenching, zone refining, molten salt processing, extrusion,

hot pressing, freeze drying, etc. for producing maximum density and grain orientation in an

effort to maximize the Jc, (4) investigate the sol-gel or metallo-organic decomposition

chemical processes for the development of superconducting thin films in the Y and Bi-based

systems, (5) adapt previously developed techniques for superconducting grounding straps to

the bismuth-based materials, including tapecasting, tape cutting, sintering, electroding,

mounting tapes on PC boards and encapsulating, (6) evaluate new compositions in the YBCO

system that were reported to have Tc's in the 235 K to 265 K range and (7) characterize and

evaluate the superconducting materials and devices in regard to their various properties of

interest; i.e., bulk density, crystalline structure, microstructure, thermal conductivity, thermal

expansion, T c, Jc, contact resistivity, and oxygen sensitivity.

II. Introduction

Since the discovery of a High T c superconducting phase in the Bi-Sr-Ca-Cu-O

(BSCCO) system by Maeda and his coworkers in January 1988 (1), extensive research has

gone into the areas of processing, characterization, phase equilibria, physical property

measurement, and device fabrication of these materials. Ceramic superconducting devices in

the Y-Ba-Cu-O, Bi-Pb-Sr-Ca-Cu-O and T1-Ba-Ca-Cu-O systems have been fabricated at

Clemson University using the rigid conductor process (RCP) (2'3) for the SAFIRE

(Spectroscopy of the Atmosphere using Far Infra-Red Emission) program.



Of thematerialsystemsthatsuperconductaboveliquid nitrogentemperature(77 3 K),

processingin thebismuth-basedsystemseemsto bethemostattractivebecauseof the

following reasons:

1) The high critical temperature (Tc) BSCCO 2223 phase has a Tc

17 °K higher than that of the YBCO system.

2) The bismuth-based materials are less oxygen stoichiometry sensitive

than the yttrium-based materials.

3) The bismuth-based materials are much more resistant to moisture

degradation than the yttrium or thallium-based materials because

the bismuth-based materials do not contain barium, which in a moist

environment results in the rapid formation of alkaline conditions on

the sample surface and accelerated degradation. This is basically

due to the formation ofBaCO 3.

4) The bismuth-based material has a higher intrinsic critical current

density (Jc) than the yttrium-based material and with better grain

alignment could possibly have higher extrinsic Jc-

5) The bismuth-based materials are easier to prepare than the

thallium-based materials due to the extreme volatility of the Ti +3

which makes the results nonreproducible and unreliable.

6) The bismuth-based materials are less dangerous than the thallium or

mercury-based materials due to the poisonous nature of the T1/Hg vapors.



TheBSCCOcompoundconsistsof anoxygendeficientperovskitelayercontaining

copperoxideplanessandwichedbetweenbismuthoxidelayers. The number of copper oxide

planes corresponds to the n in the chemical formula Bi2Sr2Ca(n.1)CunO x where n = 1, 2, or

3. As the number of copper oxide planes increases, so does the critical temperature. The

three main compounds are,

Bi2 Sr2Cu 10x

Bi2Sr2CalCu2Ox

Bi2Sr2Ca2Cu30 x

Tc- 7K

T c - 80 K

Tc- ll0K

and are shown in Figure 1. The compounds we are most concerned with are the

Bi2Sr2Ca 1Cu20 x (2212 phase) and primarily the Bi2Sr2Ca2Cu30 x (2223 phase). The

highest T c material is very difficult to synthesize in phase-pure form because separation of the

2223 phase from the 2212 phase is near impossible in bulk form. The 2223 phase has a very

small sintering temperature range and long sintering times are required to obtain bulk material

which is almost phase-pure. Many investigators found it necessary to dope the BSCCO

material with lead to achieve significant quantities of the 2223 phase. They showed that the

lead (although it is not known why) increased the percentage of the 2223 phase formed and

acted as a flux by decreasing the sintering temperature and time required to form the 2223

phase(4-10). The lead was also shown to promote crystallization. Another reason for doping

the BSCCO material with lead is to increase the apparent valence of copper. As with the

lanthanum-based system, the copper valence should be greater than 2+. By replacing some of

the Bi 3+ with Pb 2+, the apparent valence of copper is increased. Other phases that were

present in other investigators' work were the 2201 and 2212 phases, Ca2PbO 4,

(Ca, Sr)2CuO 3, a semiconducting phase, (Sr, Ca)xCuyO z, Cu20, (Ca, Sr)14Cu21041 and

excess CuO. Some of these investigators believe that the Ca2PbO 4 phase, the CuO and the

2212 phase interact with one another by liquid phase sintering, precipitation, dissolution or in

some other way to form the 2223 phase (10-21). Besides lead, a number of other dopants

have been studied to determine if the superconducting properties could be improved. Of the

many dopants investigated, antimony was one of the additives which actually improved the



electricalproperties. Severalinvestigators showed that the critical temperature of the BSCCO

superconductor was increased with the addition of small amounts of antimony (22-25). Again,

as with the lead, the antimony appears to enhance the conversion of mixed phases and

impurities to the 2223 phase, but the mechanism behind this is not yet understood.

The amount of strontium in these superconductors has also been investigated. It was

shown that as the amount of strontium in the superconductor was increased, the 2212 phase

tends to form instead of the 2223 phase (26-29). The reason for this is that the 2212 phase is

strontium-rich and leaves the leftover calcium in the Ca2PbO 4 form. The optimum amount of

strontium was found to be somewhere between 1.6 and 1.95 moles. As a result of these ideas

the composition decided upon for this investigation was Bi 1.6Pb0.4Sr1.9Ca2.05Cu3.050 x or

Bi 1.6Pb0.4Sb0.1Sr 1.9Ca2.05Cu3.05Ox when the effect of antimony additions was

investigated.

In trying to understand the 2223 phase formation of the bismuth-based material, there

are many variables which must be considered. First, the lead doped BSCCO system is a five

component system and understanding the bulk system requires an understanding of the binary

and tertiary systems which make up the bulk system. Some of the phases formed from the

smaller systems become impurity phases of the bulk system or the phases actually intergrow

within each other. In either case, they are difficult to remove. Secondly, the literature is

contradictory and more over, confusing. Many investigators have published data on the

optimum composition for formation of phase-pure 2223 based on powder X-ray diffraction

studies (XRD) and electrical property data. The investigators all had different starting

compositions, firing schedules and atmospheric controls. Such disagreement implies that

(1) cationic substitutions can occur readily or (2) impurity phases are present and either

dissolved to form a glassy phase or their XRD peaks overlap with those of the 2223

phase (28). The same happens with temperatures, ranging from 827 °C to 890 °C, and

atmospheres, which go from reducing to air to oxidizing. In all cases, it appears that no one is

really sure exactly what is going on. One thing is certain, there is still a lot of work to be done

on the BSCCO system to fully understand the mechanisms of formation for the different

phases. The most important parameters which influence the formation of the 2223 phase are

chemical composition, atmosphere, powder preparation, sintering time and sintering



temperature.Also important,but rarelymentionedin literature,is theparticlesizeand

distributionof theprocessedpowders.Theseaffectthereactivityanddensityof thebulk

superconductor,whichhasbeenshownto notonlyberelatedto thephaseformationbut to

the finalphysicalpropertiesaswell.

Thebismuth-basedmaterialhasbeensynthesizedby severaltechniques,includingglass

preparation,meltquenching,mixedoxidesandchemicalcoprecipitationroutes(30-39).

Chemicalcoprecipitationviaanoxalateroutewaschosenfor this investigationbecauseof the

ability to makeveryhomogeneousanduniformpowders.Powderpreparedby themixed

oxideprocessmustbegroundandcalcinedseveraltimesinorderto obtaina powderwhich

givesreliableandreproducibleresults.However,eachtimethematerialis groundor ball

milled,impuritiesareintroduced,thusloweringthequalityof thepowderproduced.

Coprecipitatedpowder,on theotherhand,becauseof fineparticlesize(lessthan1 _m) and

highpurity, ismorereactiveandmaynotneedto becalcinedat all(38). Although,some

investigatorshaveobtaingoodresultsusingmeltquenchedor glasspreparedpowders,we

believethat thecoprecipitationrouteis themostreliabletechniquefor thisstudy. The

BSCCOmaterialhadbeencoprecipitatedat ClemsonUniversityusingtheoxalateroutewith

both theacetatesandnitrates.Thenitrateswerechosenovertheacetatesfor the

bismuth-basedmaterialbecausecopperacetateis solubleonlyin abasicsolutionandbismuth

acetateonly in anacidicsolution. Theonlyproblemwith thenitratesis thesolubilityof

bismuthnitrate(38"40). Actually,thebismuthnitratepowderwasfound to dissolve in a dilute

nitric acid solution quite easily.

Among all of the possible applications of high T c superconductors, electric wiring,

high density data transmission lines, magnetic shielding and hybrid technology are the areas in

which the first high T c components could be used. At this time, thick film technology appears

to be the best avenue for making these components. Table 1 shows different phases of

BSCCO thick films on a variety of substrate materials (41-56) The key substrate materials

shown are SrTiO3, MgO, Ag and the zirconia based substrates. The major phases researched

are 1112, 2212, 2223 and 4334. The properties range from non-superconducting, due to

fiim-substrate reaction or a yellow-green insulating phase, to transition temperatures in excess

of 100 K on MgO. Cold rolling of the BSCCO thick film on silver also produced Tc's greater



than100K. ThehighestTc obtainedon aYSZsubstratewas72K. AI203 andquartzwere

shownto bepoor substratematerials.Overall,thebestsuperconductingpropertieswere

obtainedon theMgO substrates.However,thestabilizedzirconiasubstratesarepreferred

becauseof their lower thermalconductivity.Someof theproblemswith thick film technology

arelow densityfilmsandreactionsbetweenthesubstrateandthefilm. To obtain BSCCO

thick films with good properties, very dense, single phase films are required. Long sintering

times are necessary to obtain these dense, single phase films. Reactions occurring between the

films and the substrate materials are intensified as the sintering times increase. These reactions

have been reported by other investigators and are not altogether understood. What is known

is that the reactions occurring at the interface between the film and the substrate are the main

barrier inhibiting practical device design and understanding them could be the key to avoiding

them. Screen printing appears to be the easiest and most economical way of depositing films

onto the substrate. Other methods which have been used are tapecasting, spray pyrolysis,

molten oxide and rapid quench methods. Due to the different phase transformations occurring

in the BSCCO system, fabrication of thick films is much more complex than for other systems.

Thick films in both the yttrium and bismuth-based systems have been successfully fabricated at

Clemson University by tapecasting and screen printing.

The Y5Ba6Cu I 10y compound possessed critical temperatures in the 235 K to 265 K

range, although, there was a problem with reproducibility. The investigators believed that

oxidation at low temperatures, 150 °C to 70 °C, helped to stabilize this high-T c phase, so the

samples were annealed in oxygen for 96 hours at 150 °C. They also used high pressures on

the order of 130 atmospheres of oxygen to synthesize this material. Although they could no

longer reach 77.3 K, the investigators chose an acetone bath with dry ice, rather than liquid

nitrogen, to confirm the Tc's because of the ease of temperature control. This material did not

show a Meissner effect but the investigators speculated that this was due to the microstructure

or to the fact that the superconducting path could be more filamentary which would imply that

"the observed phenomena is not bulk-like. ''(57)

To date, the results in the BSCCO system include synthesis of the BSCCO material by

mixed oxide, melt quenching and chemical coprecipitation techniques in bulk, thin and thick

film, and hot pressed forms. Studies have been performed on the effect antimony additions,



thenumberof calcinations,pressingpressure,fastfiring,quenchingandatmospherehaveon

the final superconductingpropertiesaswellasthe influenceof resistancechangesduring

sinteringon phaseformation.Table2 summarizestheseresults.

This report contains the sample preparation procedure for the bismuth-based materials

synthesized in bulk, thin and thick film, and hot pressed form by the nitrate and acetate based

chemical coprecipitation, mixed oxide and melt quench processes. It also contains data on the

bismuth-based superconducting grounding link.

III. Experimental Procedure

As previously stated, the composition decided upon for this investigation was

Bi 1.6Pb0.4Sr 1.9Ca2.05Cu3.050 x or Bi 1.6Pb0.4Sb0.1Srl.9Ca2.05Cu3.05Ox when the effect

of antimony additions was investigated. All of the materials were first tested for the Meissner

effect. The critical temperature and critical current density were evaluated using a standard

four point method. The resistance was measured with a Keithley micro-ohmmeter (Model

580, Keithley Instruments Inc., Cleveland, Oh.) with a sensitivity of 10 -6 fL The critical

currents were measured using a 1 laV per mm standard with a Keithley Autoranging

MicroVolt DMM (Model 197, Keithley Instruments Inc., Cleveland, Oh.). In addition, the

structures of the samples were examined by powder X-ray diffraction (XRD) using Cu Kot

radiation (Model XDS 2000, Scintag Inc., Sunnyvale, Ca.). Scanning electron microscopy

(SEM) (Model JSM-IC848, Jeol, Peabody, Ma.) equipped with an Energy Dispersive X-ray

Analysis (EDAX) unit (Model TN 5500, Tracor Northern Inc., Middleton, Wi.) and Optical

microscopy (OM) (Model ICM 405, Zeiss, Oberkochen, West Germany) were used to

observe the homogeneity and surface morphology of the materials. A BET Surface Area

Analyzer (Model Gemini 2360, Micromeritics Instrument Corp., Norcross, Ga.) and a

Sedigraph (Model 5100, Micromeritics Instrument Corp., Norcross, Ga.) were used to

determine the particle size and distribution of the BSCCO materials. Differential Thermal

Analysis (DTA) (Model DTA 1700, Perkin-Elmer, Norwalk, Co.) was used to determine the

thermal effects of the BSCCO materials. The electrodes for all materials were applied using a



commercialsilverpaste(ModelC8710,HeraeusInc., Cermalloy Division, West

Conshohocken, Pa.) and fired at 845 °C for eighteen minutes.

1. BSCCO Mixed Oxide Process

Figure 2 shows the preparation process for the uniaxial and hot pressed bulk

bismuth-based material. Figure 3 shows the preparation process for the tapecast

bismuth-based material. In all cases, the starting materials were Bi20 3, PbO, SrCO 3, CaCO 3

and CuO. The powders were weighed out according to the batch information sheet shown in

Table 3 and ball milled with distilled water for one hour and dried at 100 °C for eighteen

hours. The dried powder was then pressed into pellets and calcined at 810 °C for twelve

hours and one or three times at 830 °C for twenty-four hours depending on the process. The

calcined powder was then ground with a mortar and pestle for processing into the bulk and

tapecast material. For the uniaxially pressed material, the calcined powder was pressed into

one square inch pellets and sintered at 845 °C for twenty to two hundred hours in air. For the

hot pressed material, the calcined powder was hot pressed at 5000 psi for six hours at 845 °C

in oxygen. This material was then tested or subjected to an additional heat treatment of

twenty-four hours at 845 °C in air. The furnace schedule for the bulk material can be seen in

Figure 4. For the tapecast material, the calcined powder was ball milled with trichloroethylene

for one hour and dried at 1O0 °C for eighteen hours. The dried powder was then mixed with a

commercial binder (Model B73305, Palomar-Metoramic Sciences, Inc., San Marcos, Ca.) in

the ratio of 150 grams of powder to 80 grams of binder and ball milled for one hour. The

mixture was deaired for ten minutes and tapecast by a conventional tapecasting processes (57)

The tape was cut into strips with the dimensions 25.4 mm x 2.0 mm x 0.5 mm The strips

were sintered by a single and double ramp process. In the single ramp process the tapes were

sintered at 845 °C for twenty-eight to forty-eight hours in air using the furnace schedule seen

in Figure 4. In the double ramp process, the tapes were covered and sintered at 500°C to

800°C for two hours, cooled down to room temperature, uncovered and sintered at 845 °C

for thirty hours in air. Tapes were also sintered covered at 845 °C for thirty hours using the



doublerampprocess.Thefurnaceschedulefor thedoublerampprocesscanbeseenin

Figure 5.

A study on fast heating and quenching was performed to determine the effects on the

bulk material and electrical properties. In fast heating, the square inch pellets were put

directly into the furnace at 845 °C rather than being ramp heated at 100 °C/hour. In

quenching, the pellets were removed from the furnace at 845 °C and cooled by the

atmosphere to room temperature in a few minutes.

2. YBCO Mixed Oxide Process

The YBCO "superconductors" were synthesized in both bulk and tapecast form. The

starting materials were Y203 , BaCO 3 and CuO.. The materials were weighed out according

to the batch information sheet shown in Table 4. The procedure used to synthesize the bulk

and tapecast materials was the same as that of the bismuth-based superconductors except the

dried powder was calcined three times at 900 °C for twelve hours and annealed at 450 °C for

twelve hours. The calcined powder was sintered at 910 °C for twelve hours and annealed at

450 °C for twelve hours in both air and oxygen. The electrodes were applied using the same

silver paste and double firing method as was used in the bismuth-based superconductors

except the firing temperature was 910 °C. A flow chart for the process can be seen in

Figure 6 and the furnace schedule and operation can be seen in Figure 7.

3. BSCCO Coprecipitation Process - Nitrate

Figure 8 shows the preparation process for the coprecipitated bulk bismuth-based

material and Figure 9 shows the process for the tapecast bismuth-based material. In both

cases the starting materials were Bi(NO3) 3, in a dilute nitric acid solution, Pb(NO3) 2,

Sr(NO3)2 ' Ca(NO3)2,4H20 and Cu(NO3)2,2.5H20. The materials were weighed out

according to the batch information sheet shown in Table 5. In the case where small additions

of antimony were added, Sb203 (As = 0.035%) from Metal and Thermit Corporation was

used since a nitrate form of antimony was not available. The bismuth nitrate solution was



poured into a beaker and the other constituents were added one at a time, until each dissolved

in the dilute nitric acid solution. Distilled water was added periodically to aid in this process.

The solution was constantly stirred by a magnetic stirrer. Once all the constituents were

dissolved, a twenty percent excess aqueous solution of oxalic acid was added and stirred for

twenty minutes. During this time, the pH was adjusted to approximately 3.5 with ammonium

hydroxide. The solution was then dried in a vacuum oven for twelve hours. After drying, the

powder was heated to 600 °C for two hours in an alumina crucible to burn offall of the

organic radicals. This precalcined powder was then ground and pressed into pellets and

sintered at 845 °C for thirty hours in air or calcined at 830 °C for twelve hours in air. The

calcined powder was then ground with a mortar and pestle for processing into bulk and

tapecast material or calcined again at 830 °C for twelve hours in air. For the bulk material,

the calcined and precalcined powder was sintered at 845 °C for twenty-four to thirty hours in

air. These materials were then electroded and tested. For the tapecast material, only calcined

material was used to cast tape. The calcined powder was ball milled with trichloroethylene for

one hour and dried at 100 °C for eighteen hours. The dried powder was then mixed with the

same commercial binder used for the mixed oxide materials in the ratio of 100 grams of

powder to 45 grams of binder and ball milled for one hour. The mixture was deaired for ten

minutes and tapecast. The tape was cut into strips with the dimensions 25.4 mm x 2.0 mm x

0.5 mm. The strips were sintered covered at 845 °C for twenty-four to fii_y hours in air and

sintered covered at 845 °C for twenty-four to fifty hours in a low oxygen atmosphere. Both

process used the furnace schedule seen in Figure 4.

4. BSCCO Coprecipitation Process - Acetate

Figure 10 shows the preparation process for the coprecipitated bulk bismuth-based

materials. The starting materials were Bi(O2C2H3)3, Sb(O2C2H3)3, Pb Subacetate in

methanol and acetic acid, Sr(O2C2H3)2 in water, Ca(O2C2H3)2oH2 O in water and

Cu(O2C2H3)2°H2 O. The materials were weighed out according to the batch information

sheet shown in Table 6. The bismuth acetate and antimony acetate were put in a beaker and

dissolved with acetic acid. Then, the solutions of strontium, calcium and lead were poured



into the beaker as well as some methanol. When everything had dissolved, the solution was

made basic with ammonium hydroxide and the copper acetate was added. The solution was

constantly stirred by a magnetic stirrer. Once the copper acetate dissolved, the solution was

changed to acidic with acetic acid and the excess solution of oxalic acid and methanol was

added and stirred for twenty minutes. The solution was then dried in a vacuum oven for

twelve hours. After drying, the powder was heated to 600 °C for two hours in an alumina

crucible to burn offall of the organic radicals. This precalcined powder was then ground and

pressed into pellets and calcined at 830 °C for twelve hours in air. The calcined powder was

then ground with a mortar and pestle for processing. The calcined and precalcined powder

was sintered at 845 °C for twenty-four hours in air using the furnace schedule seen in

Figure 4. These materials were then electroded and tested.

5. BSCCO Melt Quench Process

Figure 11 shows the preparation process for the melt quenched bulk bismuth-based

material. The starting materials were Bi203, PbO, Sb203, SrCO 3, CaCO 3 and CuO. The

powders were weighed out and ball milled with distilled water for one hour and dried at

100 °C for eighteen hours. The dried powder was then calcined once in an alumina crucible at

820 °C for twelve hours. The calcined powder was then ground with a mortar and pestle for

melt processing. The powder was then melted in an alumina crucible at 1200 °C for twenty

minutes in air and rapidly cooled to 1100 °C for two hours in air. The crucible was removed

from the furnace and the BSCCO melt was quenched in a stainless steel pan. When the

material cooled to room temperature, it was cut and subjected to an additional heat treatment

at temperatures ranging from 845 °C to 865 °C for twenty-four hours in air. The samples

were then electroded and tested.

6. BSCCO Thick Film

The MgO, YSZ (Yttria Stabilized Zirconia), and MSZ (Magnesia Stabilized Zirconia)

substrates for this work were made using standard tapecasting processes. The



9.5/65/35PLZT (LanthanumdopedLeadZirconateTitanate)substrateswerecut from a hot

pressedslug. Thedifferentsubstratetapeswerecutinto stripswith theapproximate
2

dimensions45mmx 13mm The9.5/65/35PLZTsubstrateswerecut into 1cm squares.

Thesilversubstrateswerecut from 0.127mmsilverfoil with thesamedimensionsasthe

tapecastsubstrates.Theyttria contentin theYSZsubstratesvariedfrom 6% to 12%andthe

magnesiacontentin theMSZsubstratesvariedfrom 8%to 12%. Thetapecastsubstrates

werefiredbetween1500°Cand1600°Cfor four hoursin air. Someof thesesubstrateswere

coatedwith differentbuffer layermaterialsto determineif thereactionsbetweenthefilmsand

thesubstratescouldbe reduced.AnMgO bufferlayerwasusedbecauseof thegood

superconductingpropertiesobservedfromthefilmson theMgO substrates.SeveralBSCCO

compoundswerealsotriedasbufferlayermaterials.Thebufferlayerswereappliedby thedip

coatingprocess,whichcanbeseeninFigure12,at 600°Cfor 3 minutesper layer. The

numberof layersappliedto thesubstratesvariedfrom fiveto twenty layers.A_ftercoating,the

substrateswereannealedat temperaturesrangingfrom 1400°C to 1600°C for onehour. All

of thethick filmswerescreenprintedontothevarioussubstrates.Thescreenprint

dimensionswere 1.50in.x 0.25 in. Thepastefor screenprintingwasmadefrom nearlysingle

phasecoprecipitatedBSCCOpowdersmixedwith alphaterpineol,binder,tolueneandethanol

in theratioof 25:7:1:1:1. A flowchartfor thisprocesscanbeseeninFigure 13. After the

films wereprintedonto thesubstrates,theyweredriedat roomtemperaturefor twelvehours

andsinteredat temperaturesrangingfrom830°Cto 890°Cfor timesrangingfrom oneto

twenty-fourhours.

7. In-Situ Resistivity Development

In electronic materials, the resistance of the material has a major effect on its physical

properties. In superconductivity, it is used to define the material. The resistance of a material

must be zero for that material to be classified as a superconductor. Because of this, an in-situ

resistivity development study was undertaken to determine if a correlation between the

resistance of the material during sintering and the formation of the 2223 phase existed. If so,

this could aid in determining the optimum firing conditions for the BSCCO materials.



Thepowderfor thisstudywasmadebythecoprecipitationprocessdescribedin

sectionIII.3. Precalcined,onceandtwicecalcinedpowderwasusedfor thisstudy. The

electrodematerialsweresilverwiresof 0.25mmand1mmdiameter.Thewireswerecleaned

usingacommercialjewelrycleaneranddistilledwaterprior to use. Eachof thetest samples

consistedof twenty-fivegramsof powderandthesilverwireswerepressedinto theBSCCO

pelletsusingapressingforceof 20,000psi. Oncetheelectrodeswereembeddedinto the

sample,it wassinteredat 845°Cfor twenty-fourto seventy-twohoursor until oneof the

silverwiresbroke. A low oxygen(6%0 2 / 94% N 2) atmosphere was used to reduce the

oxidation or degradation of the silver wires. The embedded silver wires were connected to

the Keithley micro-ohmmeter (Model 580, Keithley Instruments Inc., Cleveland, Oh.) and

data points were taken every fifteen minutes using a 100 mA DC testing current. An IBM

386 SX-20 computer acquired the data from the micro-ohmmeter via HPIB (IEEE-488 Bus)

interface.

IV. Results and Discussion

1. BSCCO Mixed Oxide Bulk Material

Figure 14 shows the resistance versus temperature curves for compacts which were

prepared at 845 °C for twenty and two hundred hours in air. The curve of the two hundred

hour compact showed that the material had a sharp transition to the superconducting state at

108.1 K, where as the curve of the twenty hour compact had a wide transition from 120 K

(onset) to 98.9 K (zero). This wide transition is due to a second phase of

(Bi,Pb)2Sr2CalCu2Ox (2212). All of the compacts had a certain percentage of the 2212

phase but this phase decreased and the (Bi,Pb)2Sr2Ca2Cu3Ox (2223) phase increased as the

sintering time increased. This can be seen from the Xray diffraction data shown in Figure 15.

The four patterns are from compacts which were prepared at 845 °C for twenty, twenty-eight,

thirty-three and one hundred hours. Looking at the double peak at approximately thirty-five

degrees, one can see that as the sintering time increased the amount of the 2212 phase

decreased as the 2223 phase increased. The room temperature resistivities, between 10 and



15mfL and the onset of superconductivity, 120 K, was about the same for both compacts.

The only measured difference was the transition width which was influenced by the amount of

each phase present. The amount of each phase present, which is due to the sintering time,

also influenced the critical temperature of the compacts. The sintering time versus critical

temperature curve shown in Figure 16 shows that as the sintering time increased the critical

temperature increased. From twenty to fifty hours the critical temperature increased linearly

by 6 K but only by 3 K over the next one hundred fifty hours. This is basically due to the

conversion of the 2212 phase to the 2223 phase. At first, the material is almost all 2212

phase, so it is easier to convert it to the 2223 phase, but as more and more 2223 phase is

formed, the driving force for conversion of the 2212 phase to the 2223 phase is decreased

dramatically. As the material was converted to the 2223 phase the grain size increased and

the grains exhibited a more flaky behavior as shown in the SEM micrographs in Figure 17.

The grain size ranged from five to ten microns in the twenty hour compact to twenty to thirty

microns in the two hundred hour compact.

The results on the fast heating and quenching showed that the heating and cooling

rates were important factors in the processing of the BSCCO materials. Four pellets were

sintered at 845 °C for fifty-four hours. The slow heat/slow cool compact had the highest T c

of 104.7 K. The slow heat/quench compact's T c dropped to 102.9 K. The two compacts that

were fast heated had Tc'S in the 101.2 to 101.4 range. The resistance versus temperature

curves for these materials can be seen in Figure 18. This study showed that while the cooling

rate was important to the T c of the compact, it was not as influential as the heating rate.

A study of the effect the number of calcinations had on the superconducting properties

of the uniaxially and hot pressed material was performed. In the uniaxially pressed material

sintered for thirty hours at 845 °C in air, shown in Figure 19, the two times calcined material

had a T c of 99.1 K, whereas the three times calcined material had a T c that was 3 K higher at

102.0 K. In the hot pressed material with no additional heat treatment, shown in Figure 20,

the two times calcined material did not superconduct, while the three times calcined material

had a T c of 83.3 K. The same two compacts with an additional heat treatment of twenty-four

hours at 845 °C in air, shown in Figure 21, the two times calcined material had a T c of

104.4 K, and the three times calcined material had a T c that was 4 K higher at 108.2 K. When



four timescalcinedpowderwasusedto producetheuniaxiallypressedbulk material,which

wassinteredfor thirty hoursat 845°C in air, thematerialdid not showasignificantchangein

eithercriticaltemperature,criticalcurrentdensityor bulk density.Four timescalcined

powderhasnot yetbeenusedto producethehot pressedmaterial.

2. BSCCO Coprecipitated Bulk Material

The coprecipitated powder was much easier to process and the time required to obtain

a workable material was much less. Figure 22 shows the resistance versus temperature curve

for the coprecipitated material which was sintered, uncalcined, at 845 °C for thirty hours in

air. The curve showed that the material had a transition to the superconducting state at

99.1 K. Figure 23 shows the resistance versus temperature curve for the coprecipitated

material which was calcined at 830 °C for twelve hours and sintered at 845 °C for thirty hours

in air. The curve showed that the material had a transition to the superconducting state at

104.8 K. The T c increased about five degrees with the addition of the twelve hour calcine.

Calcining the material for twenty-four hours, instead of twelve, did not seem to affect the

results. Again from the microstructure, shown in Figure 24, one can see that the grains of the

coprecipitated compact exhibit the same plate like morphology as those of the uniaxial and hot

pressed mixed oxide compacts. Comparing the SEM micrograph shown in Figure 25 (a),

which has been pressed at a higher pressing pressure, to that of Figure 24, one can see that the

compact is more dense. In fact, a closer look, Figure 25 (b), at the same micrograph at a

higher magnification shows that there is actually some partial melting which contributes to the

increase in density and T c. This again reinforces the idea that liquid phase sintering

contributes to the formation of the high T c phase. Since partial melting has occurred more

and more in the higher Tc/J c samples, a Differential Thermal Analysis (DTA) curve was run

for the coprecipitated powder to determine the melting point of the high T c phase. Figure 26

shows the DTA curve, and the melting point was determined to be about 865 °C. From this

information, work done by other investigators (59-61), and work currently going on at

Clemson University in the area of thick films, a compact was sintered at 845 °C for thirty

hours aiter the powder had been calcined at 860 °C for twelve hours in air. Figure 27 shows



theresistanceversustemperaturecurvefor the two compacts which were calcined at 830 °C

and 860 °C for twelve hours and sintered at 845 °C for thirty hours in air. As one can see, the

T c curves are very similar and the other properties tested were also very close to identical, so

it appears that this change in calcination temperature did not have an effect on the final

properties.

Again, as with the mixed oxide materials, the number of calcinations had a major effect

on the superconducting properties of the bulk material. In the hot pressed material with no

additional heat treatment, shown in Figure 28, the one time calcined material did not

superconduct, while the two times calcined material had a Tc of 84.0 K. The same two

compacts with an additional heat treatment of twenty-four hours at 845 °C in air, shown in

Figure 29, showed that the one time calcined material had a Tc of 106.4 K, and the two times

calcined material had a higher T c of 108.2 K. Three times calcined coprecipitated powder has

not yet been used to produce the hot pressed material. Conversely, in the uniaxially pressed

materials, the critical temperature decreased as the number of calcinations increased. Figures

30 through 32 show the resistance versus temperature curves for the uniaxially pressed

BSCCO coprecipitated compacts which were calcined once, twice and three times at 830 °C

for twelve hours. These materials were then sintered at 845 °C for twenty-four hours in air.

The pressing pressure used to press these materials was 15000 psi. The decrease in critical

temperature was most probably due to the increased amount of the 2212 phase being formed

during the calcination period. This, in turn, slowed down the conversion to the 2223 phase

during sintering.

Due to the results obtained from other investigators, the mixed oxide and chemically

coprecipitated powders, both acetate and nitrate based, were doped with antimony. Figure 33

shows the resistance versus temperature curve for the BSCCO nitrate based coprecipitated

compact doped with lead and antimony. The T c of 106.5 K was not as high as was seen in

literature but it was slightly higher than the T c of the lead doped BSCCO compact which was

104.8 K. Similarly, the acetate based coprecipitated compact doped with lead and antimony

had a T c of 105.3 K which was higher than lead doped BSCCO acetate based compact's T c of

104.1 K. The resistance versus temperature curve for the BSCCO acetate based

coprecipitated compact doped with lead and antimony can be seen in Figure 34. These



materials were calcined once at 830 °C for twelve hours and sintered at 845 °C for

twenty-four hours in air. Low pressing pressures were used to press these materials.

3. Pressure Effects

The samples prepared by the mixed oxide route required sintering times in excess of

two hundred hours to obtain materials which were nearly pure 2223 phase. The X-ray

powder diffraction analysis confirmed the existence of the 2223 phase with small impurities of

Ca2PbO 4 and Ca2CuO 3 after two hundred hours sintering The T c of this material was

108.1 K. The average particle size of the calcined mixed oxide powder was 15 _tm and the

green density of the pellet pressed from the powder at 34.5 MPa (5000 psi) was 4.23 g/cc.

When the pressing pressure was increased to 138.7 MPa (20120 psi), the green density

increased to 4.95 g/cc. Figure 35 shows the resistance versus temperature curves for the

mixed oxide pellets uniaxially cold pressed both at the high and low pressures and sintered at

845 °C for 125 hours in air. The high pressure compact had a T c of 107.3 K while the low

pressure compact's T c was 0.5 °K lower at 106.8 K. This may have, at first, seemed to be a

trivial difference in T c until the approximate sintering time required for the low pressure

compact to reach the T c of 107.3 K was determined. Figure 36 shows the sintering time

versus critical temperature plot for the mixed oxide compacts uniaxially cold pressed at

34.5 MPa (5000 psi) and sintered at 845 °C in air for times ranging from twenty to two

hundred hours. Also shown in Figure 36 is a point from the 138.7 MPa (20120 psi) high

pressure compact sintered at 845 °C for 125 hours in air. The other point on the plot is the

approximate sintering time required to achieve the 107.3 K using the lower starting pressure.

This approximate value is 155 hours, which means the low pressure compact would require an

additional thirty hours sintering to achieve the higher T c. This increase in T c with increased

pressing pressure was believed to be due primarily to the increase in density, which increased

the number of particle to particle contacts, thus making the material more reactive. This

increase in the particle to particle contacts enhanced the formation of the high T c 2223 phase

and allowed the sintering times to be reduced. Referring again to Figure 35, another

interesting aspect of the difference in pressing pressure was a reduction in room temperature



resistivityby approximatelyhalffrom thelow pressurecompactto thehighpressureone.

Thiseffectwasalsobelievedto bedueto theincreaseindensityandreactivity. Theother

aspectsof thetwo curveswerebasicallysimilar. Thetransitionwidthswereapproximately

the samefor bothcurves,andtheyshowedadecreasein resistivitywith a sharpdrop to zero

startingaround120K. Themicrostructureof bothpelletscanbeseenfrom scanningelectron

micrographsshownin Figure37. Thehighpressurecompactwasmuchmoredenseand

appearedto haveahigherdegreeof grainalignmentwhencomparedto that of the low

pressurecompact.

Thechemicallycoprecipitatedpowdersweremuchmorehomogeneousandreactive

thanthoseof themixedoxidepowders. In addition,theaverageparticlesizefor the

chemicallycoprecipitatedpowderswas3 _m. Thegreendensitieswereapproximatelythe

sameasthosefor themixedoxidepowders,however,thefireddensitieswerehigher. The

relative fired density for the chemically coprecipitated compact was approximately 84 %

(5.3 g/cc) while the mixed oxide compact's was only around 75 % (4.8 g/cc). Figure 38

shows the resistance versus temperature curves for the chemically coprecipitated pellets

uniaxially cold pressed both at the high and low pressures and sintered at 845 °C for thirty

hours in air. As was the case for the mixed oxide samples, the room temperature resistivities

of the high pressing pressure compacts was lower than that of the low pressing pressure

compacts. Overall, the resistivities for the chemically coprecipitated pellets were found to be

much lower than those of the mixed oxide pellets. Both of the curves in Figure 38 decreased

in resistance with decreasing temperature, but the onset of superconductivity was 123 K

which was slightly higher for these materials as compared with the mixed oxide pellets. The

biggest difference between the two methods was the sintering time required to form the nearly

pure 2223 phase. The mixed oxide route required sintering times six to seven times longer

than the chemically coprecipitated materials. The increased pressing pressure also increased

the T c of the materials but this time by 3.6 °K. The microstructure of the chemically

coprecipitated material, as shown from the SEM micrographs in Figure 25, had the same flaky

behavior as the mixed oxide materials but the grain size is now much smaller and the compact

much more dense. Similarly, the high pressure compact was much more dense and had a

much higher degree of orientation when compared with the low pressure compact. A closer



look at thehighpressurecompactshowsthattherewasactuallysomepartialmeltingtaking

place,andthisdefinitelycontributedto thehigherdensitiesandincreasedTc's. Thisalso

showsthat sinteringwasaidedbythepresenceof the liquid phaseandthis increasedtherate

of formationof the highT c 2223 phase.

Since initial pressing pressure has shown to be effective in increasing the density and

developing grain oriented microstructures, the effectiveness of pressure throughout sintering

was investigated via hot pressing. It was believed that hot pressing would intensify the effects

seen from the increased pressing pressure. Figure 39 shows the resistance versus temperature

curves for uniaxial hot pressed mixed oxide compacts which were prepared at 845 °C for six

hours in oxygen at 34.5 MPa (5000 psi), with and without a post anneal at 845 °C for

twenty-four hours in air. The as hot pressed sample showed that the material had a sharp

transition to the superconducting state at 83.3 K. The X-ray powder diffraction analysis

showed this material to be primarily composed of the 2212 phase. When the material was

post annealed the T c increased by approximately 25 °K to a T c of 108.2 K. The phase was

almost entirely converted to the 2223 phase. In addition, the resistivity dropped by an order

of magnitude from the hot press to the post anneal. Although the chemically coprecipitated

powder was much more reactive, homogeneous and had a finer particle size, the results of the

chemically coprecipitated material were the same as those for the mixed oxide samples. The

microstructure of the as hot pressed sample and the post annealed both can be seen in

Figure 40. The as hot pressed sample appears to be a very dense melt with partial orientation,

but when the material was post annealed, the density dropped from about 97 % to about 92 %

relative density. The grains actually appeared to grow right out of the melt to give the

appearance of a very open structure. This could be a little deceiving but this material was still

much more dense than any of those produced by the increase in initial pressing pressure. The

high T c 2223 phase of the mixed oxide samples was shown to be formed in a much smaller

amount of time when hot pressed and post annealed as opposed to the material just being

sintered. In contrast, the chemically coprecipitated materials could be used to form the high

T c phase in the same amount of time by either method. The pressure throughout sintering had

a similar effect to that of the processing pressure, in that, the density of these materials

increased and the grains became more oriented. The increased density caused an increase in



thenumberof particleto particlecontactswhichincreased the reactivity and this together

decreased the amount of time required to form the high T c 2223 phase.

4. BSCCO Melt Quenched Material

Figure 41 shows the resistance versus temperature curve for the melt quenched

compact with no additional heat treatment. The curve showed that the material, originally in

the semiconducting state, did show superconducting behavior with an onset temperature of

approximately 100 K. However, the material did not superconduct at 77.3 K. Figure 42

shows the resistance versus temperature curves for the melt quenched compacts with

additional heat treatment. Curve (a) shows a compact with thirty hours of additional heat

treatment at 845 °C and curve (b) shows a compact with sixty hours of additional heat

treatment at 845 °C. Both curves showed metallic behavior, the thirty hour compact had an

onset temperature of about 110 K and the sixty hour compact had an onset temperature of

about 120 K. Neither of the compacts superconducted at 77.3 K and both curves showed

double hump transitions, indicating the presence of a large amount of low T c second phase

material. The room temperature resistance of the sixty hour compact was about half that of

the thirty hour compact. The microstructure of the melt quenched material looks very

inhomogeneous, there are areas of solid melt and areas of very porous material. Figure 43

shows the microstructure of the two different areas of a melt quenched sample with sixty

hours of additional heat treatment. If these micrographs are compared with those of the hot

pressed material in Figure 40, similarities can be detected. One possible conclusion would be

that these are regions of high T c phase, the porous grain growth region, and low T c phase, the

solid melt region.

The melt quenched powders were also doped with antimony to see if this could

increase the amount of high T c superconducting material formed. The powders doped with

lead and antimony did not show superconducting behavior at liquid nitrogen temperature.

Figure 44 shows the resistance versus temperature curve for the BSCCO melt quenched

compact doped with lead and antimony. The sections were sintered at 855 °C for twenty-four

hours in air.



5. BSCCO Tapecast Material

The tapecast material required a longer processing time than the bulk material to

achieve superconductivity above 77 K. All of the powder used to make the mixed oxide

tapecast material was calcined three times. Figure 45 shows a resistance versus temperature

curve for a mixed oxide tape sintered at 845 °C for twenty hours. The tape still had 0.94 m_

resistance at 77.3 K but just like the bulk material, the lower sintering time specimens had a

higher percentage of 2212 phase. This is clearly shown by the extremely large transition width

of the T c curve. The onset was still 120 K but the transition width was in excess of 43 K.

The smallest sintering time required to achieve superconductivity was twenty-eight hours and

the T c was 98.2 K. The resistance versus temperature curves for the twenty-eight hour

tapecast and bulk materials can be seen in Figure 46. Again, both curves had an onset of

120 K, but the transition width of the tape was wider that that of the compact. The T c of the

bulk material, 99.7 K, was higher than that of the tape, 98.2 K. Also, the room temperature

resistivities of the tapecast materials were four times higher than that of the bulk materials.

From the Xray diffraction data, shown in Figure 47, one can see that the tape is much less

defined than the bulk material. The tape has several overlapping and low intensity peaks

which are undefined. Looking again at the double peak at thirty-five degrees, the tape was

primarily 2212 while the bulk was half 2212 and half 2223. Looking at the surface

morphology of a tape and a compact that were prepared at 845 °C for thirty-three hours,

shown in the SEM micrographs in Figure 48, the tapecast material has a much smaller grain

size than the bulk material. Referring to the twenty hour compact in Figure 17 and comparing

it to the thirty-three hour tape, one can immediately see the similarities. The grain size and

density are about the same but the tape appears to have better orientation than the twenty

hour compact.

There was a problem with the tapecast material, alter thirty hours sintering, a

percentage of the tapes started to curl and fracture. As the sintering time increased so did the

percentage of unacceptable tapes. To alleviate the curling problem, the tapes were covered

and sintered at 845 °C for thirty hours using the single ramp furnace schedule shown in

Figure 4. These tapes did not curl but they did partially react with the setter plate. From



informationaboutthebinderburnoutrateandtheY-Ba-Cu-Osystem,it wasdecidedthat the

tapeswereto becoveredandsinteredat 500to 800°Cfor two hoursusingthedoubleramp

furnacescheduleshownin Figure5,thenuncoveredand sinteredfor thirty hoursat 845°C.

Theseresultsareshownin Table7. Thebestresultscamefromthetapeswhichwerecovered

andsinteredat 845°C,but thesetapespartiallyreactedwith thesetterplate. A sinteringtime

versuscritical temperaturecurvein thetwenty-eightto forty-eighthour singlerampsintering

timerangewith a dot for thedoublerampprocessof 700°C is shownin Figure49. The

curveshowsjust how muchhighertheTc of thedoublerampprocessisover thesingleramp

process.TheJc'sof thedoublerampprocessaretwice thatof thesinglerampprocess.

Thecoprecipitatedtapecastmaterial,like thebulk material,wasmucheasierto

process.Figure50showstheresistanceversustemperaturecurvefor coprecipitatedtapecast

materialwhichwassinteredfor thirty hours.For all thetapecasting,thepowderusedwas

calcinedat 830 °Cfor twelvehours.Thecurve,like thosefor thebulk material,showedthat

thematerialhada sharptransitionto thesuperconductingstateandtheTc was 102.4K.

Comparingthemicrostructureof thecoprecipitatedtapecastmaterialto thatof the mixed

oxidetapecastmaterial,onecansee,from Figure51,thatthecoprecipitatedtapeis much

moreuniformandseemsto haveabetteralignmentthanthemixedoxidetape. Also, the

curlingproblemexperiencedwith themixedoxidetape,hasnotseemedto bea problemwith

thecoprecipitatedtape. Although,curlingwasnot aproblemwith thecoprecipitatedtape,

low strengthwas.

Both themixedoxidecurlingproblemandthecoprecipitatedlow strengthproblem

were solvedby firing thetapesin a low oxygenatmosphere.TheTc'sremainedvirtually the

same,101.5K versus101.7K for themixedoxidetapecastmaterialand102.4K versus

102.1K for thecoprecipitatedtapecastmaterial. Themixedoxidetapecastmaterialno longer

neededto becoveredandall of thetapesappearedto bestronger.A resistanceversus

temperaturecurvefor thecoprecipitatedtapecastmaterial,whichwassinteredfor thirty hours

in the low oxygenatmosphere,canbeseeninFigure52.



6. BSCCO Grounding Links

Superconducting grounding links were made from the coprecipitated tapecast material

and can be seen, along with the resistance versus temperature curve, in Figure 53. The critical

temperature of the links were approximately 101 K The resistance at liquid nitrogen

temperature due to the solder and the gold pins was 0.9 mf_. The thermal expansion of the

material was determined to see if the links could be made from the same materials as the

YBCO links were made from. The thermal expansion was determined to be approximately

12 x 10 -6 in/in °C from the thermal expansion curve shown in Figure 54. The thermal

expansion of the printed circuit board was determined to be 16 x l0 "6 in/in °C and for the

epoxy resin was 50 x l0 "6 in/in °C (2) From this information, the materials used for the

YBCO links should work fine for the BSCCO material.

7. BSCCO Thick Films

MgO was the first substrate material chosen for the BSCCO thick film material based

on the data in Table 1. Figure 55 shows a resistance versus temperature curve for a

coprecipitated screen printed thick film which was sintered for one hour at 845 °C in air and

had a T c of 89.0 K Figure 56 shows an SEM micrograph of the BSCCO thick film on the

MgO substrate. It is evident from the microstmcture that the film is not very dense, this is

due primarily to the short sintering time. As previously stated, longer sintering times are

required for denser films and denser films are required for improved properties. The results

obtained from the films on the MgO substrates are not bad considering that the substrates

were made in house and not purchased for better quality. Once good results were obtained on

the MgO substrates, the focus was directed toward the stabilized zirconia substrates because

the zirconia based substrates are preferred in the SAFIRE project due to their low thermal

conductivities. The BSCCO thick films on PLZT substrates showed similar results to the

MgO substrates.

Figure 57 shows the progression of the YSZ substrate from the zirconia powder

through the annealing of the substrate to the application and annealing of the buffer layer from



theXray diffractiondata. ComparingtheYSZ substrateto thatof theJCPDS(Joint

CommitteeonPowderDiffractionStudies)card# 30-1468for YSZ in Figure58,onecansee

thatthe substratewithout abuffer layerwasnotpureYSZ. Thiscouldhavebeena major

factorcontributingto thereactionsbetweenthefilm andthesubstrate.Whenthesubstrate

wascoatedwith theanMgO bufferlayerandannealedat 1500°C,theXRD patternmatched

thatof YSZ with theadditionalMgO peakdueto thebuffer layer. Figure59showsthe

resistanceversustemperaturecurvesfor theBSCCOthick films printed on the 10 % YSZ

substrates and sintered for three hours at 845 °C in air, with and without the MgO buffer

layer. The curves show that the buffer layer definitely improves the electrical properties of the

thick film printed on YSZ, although both films were non-superconducting at liquid nitrogen

temperature. The amount of reaction with the substrate was reduced with the addition of the

buffer layer but the reactions still occurred. Since the MgO buffer layer changed the phase of

the YSZ substrate, the structural integrity of the buffer layer was in question. However, from

the Xray data of the top and bottom of the YSZ substrate, shown in Figure 60, it is clear that

the MgO peak only occurs on the top of the substrate indicating that this was, in fact, a buffer

layer and not a reaction between the MgO layer and the YSZ substrate. An SEM micrograph,

shown in Figure 61, of the MgO buffer layer showed microcracks in the buffer layer which

explains why the reactions, although reduced, were still occurring. The next step was to

consider the amount ofyttria used to stabilized the zirconia substrate. Figure 62 shows the

resistance versus temperature curves for the BSCCO thick films printed on the 8 % YSZ

substrates and Figure 63 shows the resistance versus temperature curves for the BSCCO thick

films printed on the 6 % YSZ substrates. All were sintered for three hours at 845 °C in air,

with and without the MgO buffer layer. In each case, the buffer layered substrate provided

better electrical properties than the substrate without a buffer layer. In addition, as the

amount ofyttria used to stabilize the zirconia decreased, the electrical properties improved.

However, none of the samples superconducted at liquid nitrogen temperature.

Several BSCCO buffer layers were also tried with the YSZ substrates. Figure 64

shows a resistance versus temperature curve for a BSCCO thick film printed on the BSCCO /

YSZ substrate and sintered for one hour at 845 °C in air. The T c was 88.4 K which was

comparable to the results observed on the MgO substrates. The only drawback was that the



BSCCO buffer layer itself showed metallic behavior alter being sintered at 880 °C in air for

ten minutes. The resistance versus temperature curve for the BSCCO / YSZ substrate can be

seen in Figure 65. The other BSCCO buffer layers tried did not adhere to the substrate.

Silver was also used as a substrate material for the BSCCO thick films. No reactions were

observed from the BSCCO thick film sintered in air at 845 °C for twenty-four hours but an

apparatus sensitive enough to measure the properties was not available.

Due, again, to the results obtained by other investigators on MgO and the fact that the

MgO buffer layer would be more compatible with a magnesia based substrate, MSZ was used

as a substrate material. Figure 66 shows the Xray diffraction pattern obtained from the MSZ

substrates with and without a buffer layer. These patterns show that this substrate is a pure

stabilized zirconia substrate as opposed to the YSZ ones. In addition, the pattern shows the

MgO peaks alter the buffer layer had been applied. There were some problems applying the

buffer layers to the MSZ substrates. After approximately seven layers the substrates started to

break apart. When the bottom side of the substrate was Xrayed, shown in Figure 67, the

MgO peaks appeared on both sides which confirmed the suspicion that the substrate was

breaking apart due to the MgO solution reacting with the MSZ substrate. Figure 68 shows a

resistance versus temperature curve for a BSCCO thick film printed on a 12 % MSZ substrate

without a buffer layer. Due to the metallic behavior of the sample without the buffer layer,

which was the best electrical property observed from the stabilized zirconia substrates, it was

believed that the MSZ substrate was the best possible substrate for further study. A

differential thermal expansion curve, shown in Figure 69, was performed to see which

substrate was better in terms of thermal expansion mismatch. The thermal expansion of the

BSCCO material was determined to be approximately 12 x 10 -6 in/in °C, which is very close

to that of the MSZ substrate.

Based on the results obtained from the tapecast materials, the BSCCO thick films were

fired on 12 % MSZ substrates at 845 °C for two hours under a low oxygen atmosphere.

Figure 70 shows the resistance versus temperature curve for the BSCCO thick films printed

on the 12 % MSZ substrate with a five coat buffer layer and without a buffer layer. The

buffer layer improved the properties again, this time by 7 K. Both thick films superconducted

at transitions of 82 K and 89 K respectively. Figure 71 shows the microstructure of two



BSCCOthick films. Thedensethickfilm superconductedat 87K andtheporousthick film

did not superconductat liquidnitrogentemperature.Theseresultsreinforcethetheorythat

the film mustbedenseto havethebestsuperconductingproperties.

8. ln-Situ Resistivity Development

Figure 72 shows the resistivity data taken using the 0.25 mm silver wires and one time

calcined powder. The top graph is the entire run from the initial dwell at 845 °C until a silver

wire broke after sixty-four hours. The bottom graph is a close up view of the specific areas of

interest. Area 1 starts at the beginning of the 2223 phase formation and continues on through

area 2. The break in between the two areas was due to the degradation of the silver wire. In

area 3, the temperature was raised to 855 °C to see the effect on the material through the

resistance. As one would expect from a material which shows metallic behavior, an increase

in the temperature causes an increase in the resistance. The opposite was the case in area 4.

The temperature was reduced to 835 °C and the resistance dropped along with it. Figure 73

shows the same run using new powder and silver wire. This time when the silver wire

degraded it broke immediately after forty-two hours. These two curves show the influence of

the silver wire on the resistance and the nonreproducible nature of this particular setup.

Because of the difficulty and problems of using the 0.25 mm silver wires, the 1 mm wire was

used in the next run and the powder used was calcined twice. Figure 74 shows the 2 cycle

graph where each cycle lasted twenty-four hours. The purpose of this was to determine

whether or not a single sample's resistance curve would be reproducible. By using the two

times calcined powder the curves appeared much more regular and controlled. A very

interesting point of this run was that the second cycle had a higher dwell resistance than the

first cycle. This seemed exactly opposite of what one would expect. The most interesting

aspect of the resistivity data is shown in Figure 75. This was the heating curve shown in

Figure 74. If the curve would have been run against temperature instead of time, then a

resistance versus temperature curve could have been graphed from 77.3 K to 1118 K

(845 °C). Even so, it is easy to see from the time data that the metallic behavior continues all

the way to the sintering temperature of 845 °C.



9. YBCO Material

The synthesis of the near room temperature superconductor, Y5Ba6CUl 10y was not

successful. None of the materials prepared ever showed even a small hint of the Meissner

effect. The resistance versus temperature curves for the tapecast samples annealed in air and

oxygen are shown in Figure 76. Both curves showed insulator behavior although the tape

annealed in oxygen does show a drop in resistance around the 123 onset temperature. The

resistivities however are very different, the oxygen annealed tape's resistivities are 10 -3 lower

than that of the air annealed tape's. The tapes were not subjected to the extreme pressures

that the previous investigators used (57)

IV. Conclusions

In conclusion, we have developed and demonstrated the feasibility of producing

superconducting powders in the Y and Bi-based systems and fabricated these materials into

rigidly supported, environmentally protected superconducting circuit elements such as

conductors, coils, and connectors. We have also developed reliable and reproducible mixed

oxides and chemical coprecipitation process for producing Bi-based superconductors.

Processing and forming techniques, such as melt quenching, hot pressing, pressing pressure,

tapecasting, screen printing, sol-gel, and freeze drying have been investigated for producing

maximum density and grain orientation in an effort to maximize the Jc The Bi-based

materials have been characterized and evaluated in regard to their various properties of

interest; i.e., bulk density, crystalline structure, microstructure, thermal conductivity, thermal

expansion, Tc, Jc, and contact resistivity.

To produce coprecipitated hot pressed material with the best properties the starting

material should be calcined at least two times, but for uniaxially pressed materials the starting

material should be calcined only once. The mixed oxide materials, however, should be

calcined three times to obtain materials with the best properties. Higher pressing pressures

have shown to produce materials which have better electrical properties than those produced



from thelower pressingpressures.Themixedoxidesamplesshoweda 0.5°K increasein Tc

asthe pressure was increased, and the chemically coprecipitated samples showed a 3.6 °K

increase in T c with the same increase in pressure. The chemically coprecipitated powder is

preferred over the mixed oxide powder because a larger percentage of the high T c 2223 phase

can be formed in a much smaller amount of time. The hot pressed samples, both mixed oxide

and chemically coprecipitated, showed an increase in T c of approximately 25 °K from the as

hot pressed condition to the post annealed condition. The hot press with post anneal

enhanced the formation of the 2223 phase for the mixed oxide materials by reducing the

sintering time required to form a nearly phase pure material. This shows the influence that

pressure has on the conversion of the lower T c phase to the higher T c phase. The higher

pressure causes conversion in a substantially shorter amount of time due to the compact being

much more dense and uniform. The initial pressing pressure and the pressure throughout

sintering had similar effects on the BSCCO materials, in that, the increased pressure increased

the density of these materials and the grains became more oriented. The increased density

caused an increase in the number of particle to particle contacts which increased the reactivity

of the materials. This could be due to the sliding and/or breaking up of particles for increased

particle packing. Altogether, the higher pressures decreased the amount of time required to

form the high T c 2223 phase and increased the critical transition temperature.

Doping the BSCCO material with antimony increases the critical temperature but not

to the extent that other investigators have seen. The acetate and nitrate based coprecipitated

powders have approximately the same electrical properties. When synthesizing both the

mixed oxide and coprecipitated thick film materials, which includes tapecasting, the best

results occur when the materials are sintered under a low oxygen atmosphere because the

films can be sintered longer and become more dense. This allows a larger percentage of the

2223 phase to form. The BSCCO thick films printed on MgO and PLZT substrates, and fired

at 845°C for 1 hour had the highest T c of 89.0 K. The Jc for all films is very low due to the

poor interconnections. This could be increased by making denser, single phase films. The

MgO buffer layer improved the electrical properties of the BSCCO thick films and the MSZ

substrate is considered to be the best substrate for this work.



Superconductinggroundinglinkshavebeenmadewith betterpropertiesthanthe

YBCO groundinglinksusingtapesmadefromcoprecipitatedpowder. The critical

temperature for these links was approximately 101 K. We were unable to reproduce the near

room temperature superconductors in the YBCO system.
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Table 1 Reviewof BSCCO Thick Films.

Substrate Phase Firing Condition T c (K) Reference

Quartz 1112 830°C - lhr. NS 37

Alumina 1112 830°C- lhr. NS 37
850°C- lhr. NS

Alumina 2223 890°C - 10 rain. M 38

Sapphire 1112 890°C - 900°C I 39
2223 890°C - 900°C I

Sr2Ca2Cu4Oy 2212 830°C- lmin. 79 40

SrTi03 1112 840°C - lhr. 11 37
850°C - lhr. NS

SrTiO3 4334 875°C - 2 rain. 76 41

Ag 2212 900°C - 3 mira 75 42
860°C - 5-10 rain.

Ag 2212 910°C - 10 min. 81 - 83 43
825°C - 4 hr.

Ag 2212 870°C (slow cooled) >77 44
870°C (quenched) 89

Ag 2223 830°C - 845°C -- CR 45
48 hr. - 72 hr.
830°C - 845°C-- 100- 105
12hr.- 48 hr.

Ag 2223 880°C - 10 min. 76 46

YSZ 1112 890°C - 1 hr. 40 39
890°C - 4 hr. I
890°C - 5 min. 45

YSZ 1112 840°C - lhr. 22 37
850°C- lhr. 65
900°C- lhr. NS
850°C- 1hr. 11

YSZ 2212 840°C - lhr. 35 37
850°C - lhr. 68

NS --Non Superconducting

CR -- Cold Rolling

D -- Two Phase

S - Semiconducting

I -- Insulating

M- Metallic



Table 1 Cont.

Substrate Phase Firing Condition Tc (K) Reference

YSZ 2223

MgO 1112

MgO 2212

MgO (I00) 2112

MgO 4334

MgO (100) 2223

MgO

MgO 2223

MgO

MgO

Bil.8Pb0.2Sr2Ca2Cu3010

Bil.6Pb0.4Srl.6Ca2.4Cu3010

Bil.9Pb0.4Srl.9Ca2.1Cu3.2010

890oC-4hr. I
900°C-5min. 66
900°C-lhr. 72

890°C-lhr. 60
890oC-4hr. S
890°C-5m in. 62

890°C (quenched) 84

860oC-2hr. 18 S

870°C-2hr. 84 D
880°C-2hr. 76
890oC-2hr. 77
900°C-2hr. 78
860°C-10m in. NS

860°C-30m in. 40
880°C-30m in. 80
885°C-lhr.-- 107
872°C-72hr.

1000°C-5min.-

8400C-30m in. 82
850°C-30m in. 90
850°C-15hr. 102
850°C-38hr. 92

860°C-30mim M

890oC-4hr. S
900oC-5min. 55
900°C-l hr. NS

865°C-l hr. 92

865°C-3hr. 95
865°C-5hr. 101
865°C-7hr. 85

865°C-10hr. 99
865°C-15hr. 86
865°C-250hr. 104

895°C-3min.-

852°C-80hr. 57
865°C-80hr. 105

39

39

47

48

41

46

49

39

5O

51

NS -- Non Superconducting

CR -- Cold Rolling

D -- Two Phase

S - Semiconducting

I -- Insulating

M- Metallic



Table I Cont.

Substrate Phase Firing Condition Tc (K) Reference

MgO

MgO (100)

MgO (100)

2223

2223

Bil.6Pb0.3Sr2Ca2Cu3010

Bil.9Pb0.6Sr2 Ca2Cu3 O10

Bil.9Pb0.6Sb0.1Sr2Ca2Cu3010

890°C -10 rain.

500°C - 4 hr. -
840°C - 4 hr.

+830°C - 30 hr.
+830°C - 60 hr.
+830°C - 90 hr.

840°C - 60 hr.

920°C - 6 min.-

840°C - 65 hr.
920°C - 6 min.-

845°C - 65 hr.

M

50
80
89
45

85

102

115

38

52

53

NS --Non Superconducting

CR --Cold Rolling

D --Two Phase

S - Semiconducting

I -- Insulating

M- Metallic
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Table 3 The batch information sheet for the Bismuth-based mixed oxide materials showing

the raw materials used, their source, and the amount of each needed to achieve the

required batch size.

Batch Information Sheet

Composition # 4 Batch # 11

Formula: Bi 1.6Pb0.4Srl .9Ca2.05Cu3.05Ox

Batch Size: 400 gins. Date: October 29, 1990

Raw Materials and Source

Bi20 3 Fisher

CuO Mallinckrodt

CaCO 3 Mallinckrodt

SrCO 3 Mallinckrodt

CaO

PbO

N/A

Fisher

Oxide Mole Wt

Bi20 3 465.96

SrO 103.62

CaO 56.08

CuO 79.54

PbO 223.19

Batching

Moles Formula Wt Wt % % Oxide Batch Wt

0.80 372.768 36.672 100.000 146.689

1.90 196.878 19.369 70.189 110.379

2.05 114.964 11.310 56.030 80.743

3.05 242.597 23.866 100.000 95.465

0.40 89.272 8.783 100.000 35.131

1016.483 100.000 468.408



Table
4 The batch information sheet for the materials in the YBCO system showing the raw

materials used, their source, and the amount of each needed to achieve the required

batch size.

Batch Information Sheet

Composition # 1

Formula: Y5Ba6CUl 1Ox

Batch Size: 400 gms.

Batch # 5

Date: August 12, 1990

Raw Materials and Source

Y203 Molycorp

CuO Fisher

BaCO 3 Fisher BaO N/A

Batching

Oxide Mole Wt

Y203 225.81

BaO 153.34

CuO 79.54

Moles Formula Wt Wt % % Oxide Batch Wt

2.50 564.525 23.925 100.000 95.702

6.00 920.040 38.993 77.700 200.737

11.00 874.940 37.082 100.000 148.326

2359.505 100.000 444.765



Table The batch information for the materials in the BSCCO nitrate coprecipitation

process, showing the raw materials used, their source, and the amounts of each

needed to achieve the required batch size.

Batch Information Sheet

Composition # 1

Formula: Bi 1.6Pb0.4Srl .9Ca2.05Cu3.05Ox

Batch Size: 100 gms.

Batch # 31

Date: November 13, 1992

Raw Materials and Source

Bi(NO3) 3 Mallinckrodt

Ca(NO3)2,4H20 Mailinckrodt

Cu(NO3)2°2.5H20 Mallinckrodt

Pb(NO3) 2 Fisher

NH4OH Fisher

Sb203

St(NO3) 2 Mallinckrodt

HNO 3 Mallinckrodt

Metal and Thermit Corp.

Oxide Mole Wt Moles

Batching

Formula Wt Wt %

Bi20 3 465.96 0.80 372.768 36.672

SrO 103.62 1.90 196.878 19.369

CaO 56.08 2.05 114.964 11.310

CuO 79.54 3.05 242.597 23.866

PbO 223.19 0.40 89.272 8.783

% Oxide Batch Wt

11.030 332.478

48.963 39.558

23.748 47.626

34.198 69.790

67.388 13.033

1016.483 100.000 502.484



Table 6 The batch information for the materials in the BSCCO acetate coprecipitation

process, showing the raw materials used, their source, and the amounts of each

needed to achieve the required batch size.

Batch Information Sheet

Composition # 3 Batch # 12

Formula: Bi 1.6Pb0.4Srl .9Ca2.05Cu3.05Ox

Batch Size: 100 gms. Date: October 2, 1992

Bi(O2C2H3) 3

Ca(O2C2H3)2°H20

Pb Subacetate

Acetic Acid Fisher

Raw Materials and Source

Johnson Matthey

Johnson Matthey

Fisher

Methanol

Sr(O2C2H3) 2

Sb(O2C2H3) 3

Cu(O2C2H3)2"H2 O

Fisher NH4OH

Johnson Matthey

Johnson Matthey

Fisher

Fisher

Oxide Mole Wt Moles

Bi20 3 465.96 0.80

SrO 103.62 1.90

CaO 56.08 2.05

CuO 79.54 3.05

PbO 223.19 0.40

Batching

Formula Wt

372.768

196.878

114.964

242.597

89.272

Wt %

36.672

19.369

11.310

23.866

8.783

% Oxide

60.339

15.410

8.440

39.760

44.800

Batch Wt

60.777

125.688

134.004

60.026

19.605

1016.483 100.000 400.100



Table 7 The firing schedule, process, the Tc, and the Jc &the tapecast material using the

two stage ramp firing process. All of the tapes were firing at 845 °C for thirty

hours.

Sintering Firing Tc Jc

Temp. (°C) Process (K) (A/cm 2)

845 Single 101.5 80.8

800 Double 99.0 46.6

700 Double 101.3 50.9

650 Double 90.8 20.1

500 Double NS NS

NS - Non Superconducting
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Figure 1 The structures of the three bismuth-based superconductors

Bi2Sr2Can.lCUnO2n+4 , where n equals 1, 2, or 3 and is the number of CuO

planes sandwiched between double layers of BiO.
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I

I

I

I Pelletize I

I

I Calcine I

1. 810 °C for 12 Hours in Air

2. 830 °C for 24 Hours in Air

3. 830 °C for 24 Hours in Air

4. 830 °C for 24 Hours in Air
I

LOnn I

845 °C for 6

Uniaxial Press ess I Hours at 5000

I °C I psi in Oxygen
I Sinter i845 for 20 to

j 200 Hours in Air I Sinter I 845 °C for 24Hours in Air
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[ [ Electrode [

I
Test ] [ Test [

Figure 2 Flow chart for the uniaxially and hot pressed bismuth-based materials showing the

procedures used to synthesize these materials. These materials were synthesized

using both two, three, and four times calcined powder.
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I
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I
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2. 830 °C for 24 Hours in Air

3. 830 °C for 24 Hours in Air

500 °C to 845 °C

for 2 Hours in Air

845 °C for 28 to

50 Hours in Air

Figure 3 Flow chart for the tapecast bismuth-based materials showing the procedures used

to synthesize these materials. These materials were synthesized using three times

calcined powder.
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The furnace schedule and operation for the bulk, melt quench, and single ramp

tapecast bismuth-based materials.
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Figure 5 The furnace schedule and operation for the double ramp tapecast bismuth-based

materials.
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to the batch informationsheet seen

in Table 2

f

l ._iix with 150 ml of H20
per 100 grams of batch and

ball mill for one hour

J
'lDry at 100 °C for eighteen hours I
I i

l
Pelletize and calcine three I
times for twelve hours at f900 °C

f

Bulk Material

f
Press material into
a square inch pellet

I
Sinter pellet at 910 °C

for twelve hours

[
Anneal rape at 450 °C for

twelve hours in air
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I Tapecast Material

l
I NIL_ with trichloroethvlene
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J

Dry at 100 °C for
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I
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grams of binder and ball

mJ21 for one hour I

l
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l
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I
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[
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Figure 6 Flow chart for the bulk and tapecast materials in the YBCO system showing the

procedures used to synthesize these materials.
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Figure 7 The furnace schedule and operation for the bulk and tapecast materials in the

YBCO system.
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Figure 8 Flow chart for the coprecipitated bismuth-based materials showing the procedures

used to synthesize these materials. These materials were synthesized using both

calcined and uncalcined powder.
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Flow chart for the tapecast bismuth-based materials, made by the coprecipitation

process, showing the procedures used to synthesize these materials. These

materials were synthesized using one time calcined powder.



i ism  hl,Lead,IStron  lICalci mII timonylAcetate i SubAcetate] Acetate Acetate Acetate

I Mix I

I
I AdjustpH-ll l

I

Mix
I

i Adjust pH - 3 to 4
I

I Add Oxalic Acid
I

I Mix
I

Dry

I
I Burn off Radicals

!
Grind

]

i Pelletize

I

Calcine

]
i Grind

!

Pelletize
]

Sinter
[

Electrode
I

Test

600 °C for 2 Hours in Air

830 °C for 12 Hours in Air

845 °C for 24 Hours in Air

Figure 10 Flow chart for the acetate coprecipitated bismuth-based materials showing the

procedures used to synthesize these materials. These materials were synthesized

using both calcined and uncalcined powder.
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Figure 11 Flow chart for the melt quench process using powder prepared by the mixed

oxide process for the bismuth-based materials showing the procedures used to

synthesize these materials.
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Figure 12 Flowchart of the dip coating process used to apply the buffer layers to the various

substrates used for the BSCCO thick films.
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Figure 13 Fabrication process of the BSCCO superconducting thick films.
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a) BSCCO pellet sintered for two hundred hours. The Tc was 108.1 K.
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b) BSCCO pellet sintered for twenty hours. The T c was 98.9 K.

Figure 14 Resistance versus temperature curves of bulk samples of

Bi 1.6Pb0.4Sr1.9Ca2.05Cu3.05Ox sintered at 845 °C for different times in air.
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Figure 16 Sintering time versus critical temperature curve of bulk

Bi 1.6Pbo.4Sr1.9Ca2.05Cu3.05Ox showing an increase in T c as sintering time
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a) Pellet sintered for twenty hours.

b) Pellet sintered for 33 hours.

Figure 17 SEM micrographs ofBi 1.6Pb0.4Srl.9Ca205Cu3.050 x pellets sintered at 845 °C

for different amounts of time in air.



e) Pelletsinteredfor 125hours.

d) Pellet sintered for 200 hours.

Figure 17 (Continued)
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a) Pellet with a slow heating and cooling rate. The T c was 104.7 K.
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b) Pellet with a slow heating rate and quenched. The Tc was 102.9 K.

Figure 18 Resistance versus temperature curves of bulk samples of

Bi 1.6Pb0.4Srl.9Ca2.05Cu3.05Ox sintered at 845 °C for fii_y-four hours in air.

The curves show the influence of heating and cooling rates.
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c) Pellet with a fast heating rate and slow cooling rate. The T c was 101.4 K.
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d) Pellet with a fast heating rate and quenched. The T c was 101.2 K.

Figure 15 (Continued)



_ampie No: DIIL,e:

S_npie HI: by:

F;.O

2.5

............ 7̧ ..¸.i'' ! .....

iiiiiii.ii_

: i : :

i! i-!: ::::

n[I.G_.4Srt 9Cn_nsCu_.nsO, mn_ calcined

_ice and _in_ _r 30 lion. T= - _.l K

i!i i

.....?._i_...+...i.....

..........i....... i _

.. i ...........i .........

i i_

,̧iii  i
i! i i!

i!!! i!i_

iii
70 100 IGO 200

Temperature (K)

250 300

a) Uniaxially pressed pellet calcined twice. The T c was 99.1 K.

Sample, No: DIll:

1_ So.u,p{e |D: by:

i _ I i i i i t i ! i i I i..i..i...i .........2....i.[.. i
13il.rI_.4Srl.gCnT.ooCua.r,60_t material cslcined :: i :: i :: ::

three times arid 8intered for 30 flours. T e = 102.0 K "'_ "- : i "" "---_-'-'i--" _

.... -_--" :'-'" : .......... ÷ ""_--"-; .. i

,o.... t_i+i ..................: .......i-!!i-_!!=......,......
! I i _ i i I ! _ i i .... : : : :

" :" "":"'"_"'r "'='"":- "-: -" , ........................... , • ..:... - .. a....÷.... ,.....-:......:.....:......: ....= ...

70 1 GO 160 200 _ 60 3 O0

Tempernturo (K)

b) Uniaxially pressed pellet calcined three times. The Tc was 102.0 K.

Figure 19 Resistance versus temperature curves of bulk samples sintered for thirty hours in

air at 845 °C They varied in number of times the material was calcined.
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Figure 20
Resistance versus temperature curves of bulk hot pressed samples with no

additional heat treatment. They varied in number of times the material was

calcined.
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b) Hot pressed pellet with additional heat treatment calcined three times. The Tc was

108.2 K.

Figure 21 Resistance versus temperature curves of bulk hot pressed samples with

twenty-four hours additional heat treatment at 845 °C. They varied in number of

times the material was calcined.
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Figure 22 Resistance versus temperature curve of a bulk coprecipitated sample which was

sintered, uncalcined, at 845 °C for thirty hours. The T c was 99.1 K.
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Figure 23 Resistance versus temperature curve of a bulk coprecipitated sample which was

calcined at 830 °C for twelve hours and sintered at 845 °C for thirty hours. The

T c was 104.8 K.



Figure 24 SEMmicrographof abulk coprecipitatedsamplewhichwascalcinedat 830 °C

for twelve hours and sintered at 845 °C for thirty hours.



a) Highpressurecompactat 1000magnification.

b) High pressurecompactat 4000magnification.

Figure 25 SEM micrographsofcoprecipitatedsampleswhichwerecalcinedat 830°C for
twelvehoursandsinteredat 845°Cfor thirty hours.
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Figure 27 Resistance versus temperature curves of bulk coprecipitated samples which were

calcined at different temperatures for twelve hours and sintered at 845 °C for

thirty hours.
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b) Hot pressed pellet with no additional heat treatment calcined twice. The Tc was 84.0 K.

Figure 28 Resistance versus temperature curves of coprecipitated hot pressed samples with

no additional heat treatment. They varied in number of times the material was

calcined.
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b) Hot pressed pellet with additional heat treatment calcined twice. The Tc was 108.1 K

Figure 29 Resistance versus temperature curves of coprecipitated hot pressed samples with

twenty-four hours additional heat treatment at 845 °C. They varied in number of

times the material was calcined.
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Figure 35 Resistance versus temperature curves of bulk samples of

Bi 1.6Pb0.4Sr1.9Ca2.05Cu3.05Ox pressed at different pressures and sintered at

845 °C for 125 hours in air.
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a) Pelletpressedat 5000psi.

b) Pelletpressedat 20120psi.

Figure 37 SEMmicrographsof Bi1.6Pb0.4Srl.9Ca2,05Cu3.05Oxpelletspressedat
differentpressuresandsinteredat 845°Cfor 125hoursin air.



Saml_le No lJnta

by7.5

2.5

fl

H

!.........! Rk_ ....
i i i i

i i i i

i ....i _i/£ _ ....
; : : : : :

i i ! ! , i I : !
: i

I}i I.GPho ISr I.gC'n2.0GCu3._Oz ooprl_L'lled h.lk

maWrlnJ RiJllee_l at I_lS 'C for 30 hour1, c._l¢_ned nt

R-_O_C l'nr]2|Inu_ T¢, [0.I.RK.

.....i.............i.....

.....i--7..;.i .....

......i;L.;..... ...... ......

J i :

....; . _.._..._ .....

.....i................

x:::ik::i

T0 I00 |_0 200

l"einl_rniure (l{)

2S0 :100

a) Coprecipitated compact which was pressed at 5000 psi. The T c was 104.8 K.

b)

S.'l in pie Nor DaLe:

_ainple ID:
7.S I,#:

:: :_ i i i i i i i i i ! i _ :: _ _ :
-"""'!'""q " 4" ""- '"_ ""'='"";'".- :-,.:' ....

BI I.G I_hfl,4Sr 1.9C rll.lC uliOl em_ piLll tl_ l I_,ulk .......: : : : 7 ! _ }

m=l,erial.ml,ered. i _ 5"Cro,.3oh(xu.,,,_c.,dctn,-d.¢ T"{"_ "%""%'- I "'"'b'i'"--i-'""i ......
_I*C l'or12 lmum Pr.e,emc_ mt 20120 p.rL Tc = 108.4 R. i i i ! ! } : :

? r : : : : : : : i'""_" "'_'"-_'-"'i--" r"-"+'""=-'-"i'--'.-i...i ....

i iiiiiIii ..............i ....i--..-.;....._...--,-.----;-.-.-:,.-.--:,.....:, .....
: : : : 7 ! _ 7

S.O : : : ! ,. : ! !

..... !--" !'-".-i-.-.,._.....t....-._-. ,, b,..._, . , • . . . ..-.i.- i i ! i i :: i i

...... i,.-., i i ....._ ..-.. b.... i

..... L.....: ............ =..÷.....,.....= ......

711 104) INII 200 250 300

Te-ill_'r.n hire II(}

Coprecipitated compact which was pressed at 20120 psi.

..... :..: ............. :.......... :.....:......:.....i .......... _....!...L....i .....

: _ ......ii_-7 -" ......... r-r-r-r ......

The T c was 108.4 K.

Figure 38 Resistance versus temperature curves of bulk coprecipitated samples which were

calcined at 830 °C for twelve hours and sintered at 845 °C for thirty hours.
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Figure 39 Resistance versus temperature curves of mixed oxide compacts hot pressed at

5000 psi in oxygen at 845 °C for six hours.



a) Hot pressedpelletwith no additionalheattreatment.

b) Hot pressedpelletsinteredfor anadditionaltwenty-fourhoursin air.

Figure 40 SEM micrographsof bulk hot pressedpelletspressedat 5000psi for six hoursat

845°C inoxygen.
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Figure 41 Resistance versus temperature curve of a melt quenched sample with no
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Melt quenched sample with thirty hours of additional heat treatment. The material did not

superconduct at 77.3 K.
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Melt quenched sample with sixty hours of additional heat treatment. The material did not

superconduct at 77.3 K.

Figure 42 Resistance versus Temperature curves of melt quenched samples with additional

heat treatment. They varied in the amount of additional heat treatment time at

845 °C.



a) An area of a melt quenched sample which shows the solid melt behavior of the sample.

b)

4
_O._. ¸ - .,,,

An area of a melt quenched sample which shows the porous behavior of the sample. This

region appears to be exhibiting grain growth.

Figure 43 SEM micrographs of melt quenched samples with sixty hours of additional heat

treatment at 845 °C in air. These micrographs show the inhomogeneities in the

melt quenched materials.
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Figure 45 Resistance versus temperature curve of a tapecast sample of

Bil.6Pb0.4Sr 1.9Ca2.05Cu3.05Ox sintered at 845 °C for twenty hours in air.

tape did not superconduct and had a resistance of 0.94 m_ at 77.3 K.

The



a) BSCCObulkmaterial. TheTc was99.7K.
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b) BSCCO tapecast material. The T c was 98.2 K.

Figure 46 Resistance versus temperature curves of a bulk and a tapecast sample of

Bi 1.6Pb0.4Srl.gCa2.05Cu3.05Ox sintered at 845 °C for twenty-eight hours in air.
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Figure 47 Xray diffraction data of a bulk compact and a tape sintered at 845 °C for

twenty-eight hours in air.



Figure 48 SEM micrograph ofa Bi 1.6Pb0.4Srl.9Ca2.05Cu3.05Ox tape sintered at 845 °C

for thirty-three hours in air.
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Figure 49 Sintering time versus critical temperature curve of the single ramp tapecast

material with a dot for the double ramp tapecast material, showing why the

double ramp process is preferred.
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Bil.61:_.4Srl.9Ca2.1_Cujl.05Ox eo_eil_t_ted tat_:_
" material sintered at 845 C for 30 hours, calclned at

830°C for 12 hours. Tc = 102.4 K.
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Figure 50 Resistance versus temperature curve of a coprecipitated tapecast sample which

was sinlcred at 845 °C for thirty hours. The T c was 102.4 K.



a) Tape that was prepared by the mixed oxide process.

b) Tape that was prepared by the coprecipitation process.

Figure 51 SEM micrographs oftapecast samples which were sintered at 845 °C for thirty

hours.
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a) Superconducting grounding links produced with bismuth-based coprecipitated tapecast

material The T c was 100.5 K

b)

[

Dat_:
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Resistance versus temperature curve of grounding links produced from coprecipitated

tapecast material.

Figure 53 Superconducting grounding link property data.
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Figure 56 SEM micrograph ofa BSCCO coprecipitated thick film printed on an MgO

substrate. The film was sintered at 845 °C for one hour in air.
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InO

a

50

Snlnlp_ No IJnLe:

,%_m pie ll): by:

FLred ot e_I"C f.¢ 3 h_ure, "....................

...... _]i...,.,i....... ...... .......... i.-.,.,t..._ ...... ..-..-L.....;.---..;.....4 .........

....... :_..-.i-.,-i....... ............ i,-,i...._.,...i ............ :;--...i-.-.-i....... .........

...... i...-..L...i......i ..........

i !i!! i_i_ iii! i

......i......i .....
....._....._.....f..,..÷.....

..... i..-.-._...,- ÷,.,. _ .....

:! i:!i

....!H__ .-4-4 .....

::::::i::i:i::::i:::•

70 I00 150 2(70

......i tti ...........
÷..._-.--i..--i ........

i:ii
250 3lJO

"i'eml_er:_tu r_ (K)

b) 10 % YSZ substrates with the MgO buffer layer.

Figure 59 Resistance versus temperature curves of BSCCO coprecipitated thick films

printed on 10 % YSZ substrates and sintered for three hours at 845 °C in air, with

and without an MgO buffer layer.
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Figure 61 SEM micrograph of the MgO buffer layer showing the microcracks in the buffer

layer.
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b) 8 % YSZ substrates with the MgO buffer layer.

Figure 62 Resistance versus temperature curves of BSCCO coprecipitated thick films

printed on 8 % YSZ substrates and sintered for three hours at 845 °C in air, with

and without an MgO buffer layer.
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b) 6 % YSZ substrates with the MgO buffer layer.

Figure 63 Resistance versus temperature curves of BSCCO coprecipitated thick films

printed on 6 % YSZ substrates and sintered for three hours at 845 °C in air, with

and without an MgO buffer layer.
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a) BSCCO thick film printed on a 12 % MSZ substrate without an MgO buffer layer.
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b) BSCCO thick film printed on a 12 % MSZ substrate with a five coat MgO buffer layer.

Figure 70 Resistance versus temperature curves of BSCCO coprecipitated thick films

printed on 12 % MSZ substrates and sintered at 845 °C for two hours under a

low oxygen atmosphere, with and without an MgO buffer layer.



a) An exampleof adenseBSCCOthick film printed on a 12 % MSZ substrate. The thick

film superconducted at 87 K.

b) An example of a porous BSCCO thick film printed on a 12 % MSZ substrate. The thick

film did not superconduct at liquid nitrogen temperature.

Figure 71 SEM micrographs of two BSCCO thick films on MSZ substrates.
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Figure 72 In-situ resistivity development showing the resistivity data taken using the

0.25 mm silver wires and one time calcined powder.



0
0.00 1000.00 2000.00 3000.00

500.00 1500.00 2500.00
Time(mi&)

a) The entire resistivity run, from the initial dwell at 845 °C until a silver wire broke after

forty-two hours.

0.045

0.04-

0.035

- 0.03---

0.025

0.02

o.ol 5

0.01

0.005

0
0.00 looooo 2006.00

500.00 1500.00 2500.00
Time (min.)

b) A close up view of the specific areas of interest.

3000.00

Figure 73 In-situ resistivity development showing the resistivity data taken using the

0.25 mm silver wires and one time calcined powder.
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Abstract

The primary research of these investigations centered on developing

thallium superconducting grounding straps for the NASA SAFIRE project. To

this end conventional mixed oxide and acetate solution techniques were used to

fabricate superconducting powders. Powders were tape-cast and cut into

appropriate lengths then encapsulated in silver foil to contain thallium vapors.

Alder binder burnout and firing, the tapes were encapsulated in an epoxy resin

and electroded for electrical characterization. The highest transition

temperature of these tapes was l12K, comparable to the thallium diffusion

technique examined in many investigations.

A number of ancillary studies were performed to examine the potential

of alternative processing modes for superconducting tape fabrication.

Dielectrophoresis of superconducting powder was found to be a promising area

of study to produce c-axis orientation of superconducting powder on a metal

wire substrate. In this technique a suspension of fine grain powder in a

nonconducting medium is placed in a nonuniform electric field. The high

permittivity of the particles align with the field and migrate and deposit onto a

metal wire.

Other studies were conducted to examine silane additions for aqueous

milling of superconductors and lithium and manganese additions to thallium

superconducting compounds. These studies appeared to have less potential for

improving processing of thallium-based superconductors.



Introduction

Thallium-based superconductors are layered materials often described

as intergrowths of perovskite and rocksalt layers. Three of the most

commonly occurring thallium superconductors are shown in Figure 1. With

increasing layering there is a concomitant increase in transition temperature.

The T12Ba2Ca2Cu3Olo structure [hereon abbreviated as the T1-2223 phase]

exhibits the highest reproducible superconducting transition temperatures to

date, 120-125K.

There are several potential advantages ofT1-2223 compared to other

high-temperature superconductors. Unlike YBa2Cu307. 6 [the 123 structure]

there is no phase transition down to 1K; 2 therefore no microcracking can occur

for this reason, although differential thermal expansion of different lattice

directions could present a problem. 3 Complete phase formation of T1-2223 is

more easily attained than the bismuth analogue, Bi2Sr2Ca2Cu3Olo. Also, the

intrinsic critical current density, greater than lx108 A/cm 2, is believed to be at

least an order of magnitude higher than the 123 system. 4

However, there are disadvantages of thallium superconductors;

probably foremost among these are thallium toxicity and volatility. The highly

volatile nature of thallium arises from the transition

T1203 --> T120 + 02 875°C.

The reduction ofT1203 close to the sintering temperature creates a low melting

point compound. Thallous oxide also exhibits a low boiling point which creates

significant thallium loss. To ameliorate this problem, oxygen sintering is often

used to shii_ the above reaction to the lei_. Thallium loss is further reduced by

complete encapsulation or wrapping the material in an inert metal foil. Yet,

these steps usually do not yield consistent results. Loss of thallium presents a

major problem for reliable fabrication of thallium superconductors.

If one were to peruse the literature on thallium superconductor

processing, a confusing and contradictory picture of how to attain the highest

transition temperature and optimise the critical current density would arise.

As an example, some studies use stoichiometric mixtures of thallium barium,

calcium, and copper oxides to maximize the superconducting transition

temperature.5, 6 Another study suggests reduced amounts of calcium will

stabilize the highest transition temperatures. 8 Part of the confusing state of

thallium superconductor processing stems from the similar free energies of

layered structures; however, a large contribution to thallium superconductor



fabrication variability arises from the volatility of thallium and attaining

correct oxygen stoichiometry and distribution. 9'1°'11 The initial phase of the

research centers on the development of high transition temperature, high

critical current density thallium superconductor tapes for the SAFIRE project.

This will possibly yield improved methods of processing of these materials.

This part of the investigation may yield information not only of value for

production of high quality thallium superconductor tapes, but may be

applicable to improvement of alternative processing modes of thallium

bismuth, and other high-temperature superconductors.

TI2Ba2Ca2Cu3Olo Powder Synthesis Via Oxide Precursors

Two routes were used to prepare precursor materials for sintering

ceramic T12Ba2Ca2Cu301o • The first method consists of mixing the oxide

compounds BaO2, CaO, and CuO at 925°C for 24 hours to form the low melting

point compound Ba2Ca2Cu307. This method was developed by Sheng and

Hermann 12 to aid densification by liquid phase sintering.

The second preparation was performed by batching CaO and CuO and

firing for 925°C for 24 hours. Barium peroxide was added with TI203 prior to

sintering. Barium peroxide was chosen instead of other barium compounds

since it was believed that the oxygen produced in the conversion of BaO2 to

BaO at approximately 700°C could reduce the amount of thallium lost at

elevated temperatures.

The general ceramic processing scheme is shown in Figure 2 while

particulars of ceramic formation are as follows. Stoichiometric amounts of the

initial oxides* were thoroughly mixed in a porcelain mortar and pestle. If the

precursors were calcined, the powders were placed on an alumina setter and

heated with the furnace to 925°C. After calcining for 8 hours, the material was

allowed to cool with the furnace. The calcined material was ground and passed

through a 100 mesh sieve. This process was performed three times for a total

calcination time of 24 hours.

Afar the calcination step, T1203 and the remaining oxide constituents

were added to the calcined material in stoichiometric proportions. (To reduce

*The raw powders used were: Tl203/Salinckrodt, Lot 3800KCAM; BaO2/

Eastman Kodak Co. Lot A16A; CaO/Fisher Scientific,Lot 864342; CuO/Fisher

Scientific,Lot 901219; and LiO2/Johnson Matthey Electronics, Lot K26A20.



thallium loss, thaUic oxide is usually added prior to sintering and not in the

calcination step.) Green pellets, 13mm diameter by 3 mm thick, were formed

by pressing 1.5g of material at a pressure of 2. 7x l03Kg/cm 2 [3.9x104 psi].

The green pellets were wrapped in silver foil and fast-fired in flowing

oxygen. Oxygen was fed into the furnace to reduce thallium volatility. After

the specified soak time, pellets were taken out of the furnace and air-quenched
to room temperature.

Pellets were electroded by firing with silver paste* at 600°C for 20

minutes and cooled with the furnace. Due to the low temperature (and

consequently low thallium volatility), pellets were not wrapped in silver foil.

Sintering Studies of TI2Ba2Ca2Cu3Olo

Tables 1, 2, and 3 show the results ofsintering the three different

batches of precursor powders. Sintering temperatures of 870°C, 880oc,

890°C, and 910°C were studied with soak times ranging between 30 and 180

minutes. As seen the table, there appears to be a gradual increase in the

superconducting critical transition temperature with increasing sintering

temperature and soak times for all types of preparations studied. Apparently,

the superconducting ceramics produced without prior calcination (Table 1)

form a superconducting phase readily compared to batches which were

calcined. The trend is clearly illustrated in Table 3, sintering the batch which

contained Ba2Ca2Cu307 as a precursor for 30 minutes, did not yield a

superconducting material at the lower sintering temperatures studied.

Whereas the higher temperature superconducting phases seemed to gradually

develop for batches which were calcined, sintering with the original metal

oxides did not appreciably increase the transition temperature with time or
temperature.

Figure 3 shows SEM photomicrographs of as-fired surfaces of the

ceramic pellets (batched with T]203, BaO2, CaO, and CuO as the precursors)

which were sintered for three hours at 870°C and 890°C. The surface of the

870°C fired sample shows appreciable cracking. Fissures can also be seen in

the 890oc sintered sample. The microcracking appears to be a problem for all

pellets sintered from the separate constituent oxides. Large scale cracking

*The silver paste used was formulated to fire at 600°C: Dupont conductor
composition #7095, Lot 77Dl14.



was also obvious when examined without the aid of a microscope, yet cracking

was not observed for pellets which had calcined material as a sintering

precursor. This created a deleterious effect when the samples were cooled to

liquid nitrogen temperature. Figure 4 illustrates the resistance as a function of

temperature for a pellet sintered from the original oxide powders. The

discontinuites on the curve were accompanied by an audible "snap" and

indicated cracking of the sample. Cracking of the ceramic occurred in most

samples prepared this way; however, few samples containing Ba2Ca2Cu30 5 or

Ba2Ca2Cu30 7 showed the phenomenon when cooled.

Considerable melting of the pellet surface fired at 890°C is also

apparent in Figure 3. The relatively high transition temperature of the

sample, 112.3K, seems to agree with the generally acknowledged observation

that slight melting must occur to create the high transition temperature phase

T1-2223.

A fracture surface of both samples is shown in Figure 5. The sample

fired at 890°C shows plate-like morphology similar to the T1-2223 phase

identified by Sheng and Hermann. 12,13 The ceramic fired at the lower

temperature showed similar areas but were not as prevalent.

Higher temperature superconducting phases appear to be formed at

increased sintering temperatures and extended soak times as seen in Figure 6.

Sintering Wl20 3, BaO 2, and Ca2Cu30 5 for thirty minutes at 900°C produces a

mixture of superconducting phases are present: T12Ba2CuO 6 (Tc--SBK),

T12Ba2CaCuO 8 (Tc=ll0K) and T12Ba2Ca2Cu3Olo (Tc=120K). However when

sintered for 180 minutes, the transition temperature of the ceramic jumps to

117.8K as illustrated in Figure 7, and the material is almost entirely T1-2223.

If this batch is sintered for 180 minutes but the temperature is decreased to

880°C, complete conversion to the T1-2223 phase does not occur as shown in

Figure 6. Instead a mixture ofT1-2212 and T1-2223 phases suggests one

should sinter close to the melting point of the material to optimize the

transition temperature.

It was mentioned that pellets were fired at 910°C in this study. All

samples fired at this temperature, resulted in melting the sample and silver

foil. Consequently, the material was exposed to the furnace atmosphere and

thallium loss resulted. The samples exhibited no superconductivity down to

liquid nitrogen temperature.



TI2Ba2Ca2Cu3Olo Powder Synthesis Via Coprecipitation

Coprecipitation routes for superconductor synthesis has achieved much

attention. Coprecipitation often yields a finer, more homogeneous powder

which consequently yields improved superconducting properties.

Precursor powders were synthesized through the oxalate coprecipitation

technique. Figure 8 illustrates a schematic of the oxalate coprecipitation route

for thallium superconductors. A precursor made from barium, calcium, and

copper nitrates was coprecipitated, calcined, and then mixed with thallium

oxide before the final sintering setup. Oxalic acid was added to slightly warm

methanol to facilitate the dissolution process. The number of moles of oxalic

acid added was 150% of the moles of the metal ions in solution. Ifa molar

equivalent of oxalic acid and metal ions were added, segregated regions of blue

and white crystals appeared in the powder after drying; whereas, excess oxalic

acid created a uniform mixture.

Calcination of coprecipitated powders were subjected to the same

conditions as oxide precursors. Also, sintering was performed with the same

heating schedule as the oxide precursor conditions described above.

Energy dispersive x-ray analysis coupled with scanning electron

photomicrographs, shown in Figure 9, show elemental distribution of a TI-

superconductor pelletisrelativelyuniform within the superconducting grains

(indicated by "blocky" grains); however, a small amount of copper segregation

occurs outside of these grains. Also, inhomogeneities also occur, to a smaller

extent, for barium and calcium. Coprecipitation was examined to determine if

homogeneity can be improved in the ceramic pellets.

Resistance as a function of temperature curves for coprecipitated

thallium, superconductor ceramic pellets for various soak times at 893°C are

displayed in Figure 10. No pelletsshowed any trace of superconductivity. The

results seemed surprising in lightof the large number of studies which have

shown coprecipitated techniques improve the finalsuperconducting properties.

Energy dispersive x-ray analysis and scanning electron micrographs of the

surface of coprecipitated thallium-superconductor pelletsare shown in

Figure 11. The reason for nonzero resistance is evident upon examination of

the figure: the surface growth is almost entirely composed of thallium. (A

small region of copper is shown in the hole below the growth. Barium and

calcium-rich regions were also evident underneath Tl-needle growths in regions



not pictured.) Apparently, encapsulation of pellets made via the

coprecipitation route allows thallium to easily escape from the sample. A

possible reason for the ease of thallium escaping is because coprecipitation

oi_n yields more homogeneous and finer grains. This may create a more

reactive powder which would require a lower sintering temperature to prevent

thallium from leaving.

Ceramic Tape Formation

Ceramic superconducting tapes were formed by employing the same

processing steps used to make Tl-superconductors as the oxide route. At_r

forming the superconducting phase, the powder was passed through 400 mesh,

mixed with a 30 weight percent binder concentration. The slurry was placed in

a slight vacuum for ten minutes and allowed to sit and defoam for 20 minutes.

Ai_r defoaming the slurry, a 50 rail tape was cast with a single edge doctor-

blade and allowed to dry. Tapes were cut and placed on a zirconia setter plate

with the ends pinned down. Binder burnout was performed in an oxygen

atmosphere with a final soak of 550°C for 90 minutes.

To contain thallium vapors during sintering, tapes were carefully

wrapped in silver foil and sintered. Particulars of sintering schedules as well as

binder burnout are discussed in the results section.

High- Temperature Sintering of Superconductor Tapes

There is a paucity of fabrication techniques used to create T1-2223 or T1-

2212 tapes. Previous investigations in the literature attempt to develop

thallium superconductor tapes by placing a Ba2Ca2Cu307 precursor tape and

T1203 powder (or a mixture of T]/Ba/Ca/Cu oxides) in a hermetically sealed

container. Upon heating above 720°C, thallium oxide vaporizes and diffuses

into the precursor while the sealed container prevents thallium from seeping

into the outside environment. Sheng and Hermann developed this method to

reduce thallium volatilityand toxicityin a laboratory or industrial

environment. Typical transition temperatures of tapes range from 100-1151_

Sheng and Hermann noted there isa large variabilityofthe transition

temperature. This could be attributed to the resulting inhomogeneity which

arises from thallium diffusion into the precursor material or the sensitivityof

thallium superconducting compounds to processing conditions.



A different tape fabrication approach was undertaken in this research.

Instead of thallium diffusing into the precursor; it was believed a solid state

reaction of thallium with other precursors during sintering may lead to greater

tape homogeneity and possibly improved properties and reproducibility.

Initially Tl203, Ba2Ca2Cu307, and binder were mixed and tape cast

according to the above procedure. However, this technique was abandoned

since it produced exceedingly fragile tapes which were not superconducting.

The SEM photomicrograph in Figure 12 depicts a "feathered" and open

microstructure. When thallium is fired with barium, calcium, and copper

oxides prior to mixing with binder, "feathering" did not occur and stronger tapes

and better electrical properties were obtained. Apparently, thallium must be

incorporated into a structure with other oxides to reduce thallium volatility.

Afterwards, thallium was fired with the other oxides prior to tapecasting.

Binder burnoff rate had a considerable influence on tape uniformity,

presumably because of thallium/binder interactions. Green tapes were burned

offat 550°C. A TGA profile shown in Figure 13, shows a long, smooth burnoff

starting at 150°C until 550°C, where virtually all binder has vaporized. If the

binder burnout rate is too rapid, approximately 3°C per minute or greater,

tapes were relatively strong but were distorted, bubbled, bowed, and

nonuniform in color. Large density variations in the 12°C/min burn-out tapes

are evident upon examination of the SEM photomicrographs displayed in

Figure 14; whereas, the tape heated at 2°C/rain is relatively uniform.

Presumably the density variation of the rapidly burned-out tapes is due to a

highly exothermic thallium/binder reaction. Portions of the tape became red-

hot during the reaction even though the furnace atmosphere was at 350°C.

It was thought that reducing the amount of binder would result in less

thallium loss and consequently improved tape quality. However, lowering

binder concentration from 35 to 28 weight percent (the lowest binder

concentration which allows the powder to be cast) produced no significant

improvement of tape quality.

Tapes maintained their strength when the burnoff rate was reduced

from 12°C/rain to 3°C/min. However, tapes burned off at 3°C/min were still

slightly distorted, bubbled, and showed color nonuniformity. Reducing the

burnoff rate to 2°C/rain yielded tapes which were completely free from

distortion and were uniformly black, yet these tapes were more fragile than

tapes burned offat 3°C/min. Apparently, higher burnoffrates do not allow



sufficient time for the organics to leave the system. Figure 15 shows a

resistance versus temperature curve for a tape with a binder burnoff rate of

5°C/min and one of 3°C/min. The tape with a slower burnoffrate exhibited a

transition temperature of 100K while the tape with a rapid burnoffdid not

superconduct.

Tapes which were fired at 840°C before sintering had a relatively coarse

grain size before sintering (powder passed through 60 mesh before adding

binder) did not exhibit zero resistance down to liquid nitrogen temperature

(approximately 77K), as seen in Figure 16. In fact, sintering for only 30

minutes produced semiconducting behavior throughout the temperature range

studied. As evident in Figure 17, tapes which had finer grain size before

sintering (powder passed through 400 mesh before adding binder) displayed

significantly better properties: transition temperatures rose from

nonsuperconducting at liquid nitrogen temperatures to 97.3K for 120 minute

soak time. Microstructure of tapes fired at 890°C for 30 minutes is shown in

Figure 18. The tape of the powder which was passed through 400 mesh shows

a much finer, more uniform microstructure that the tape which had powder

passed through 60 mesh.

Presintering at 890°C showed a similar dependence on grain size.

Figures 19 and 20 show that tapes with smaller initialgrain sizeyielded higher

transition temperatures. The smallest grain size tape with the longest soak

time resulted in a transition temperature of 106.5K. Itwas found these tapes

were composed of long rectangular grains in the microstructure, indicating TI-

2212 phase (forcomparison a more acicular morphology is indicative the

higher transition temperature TI-2223 phase).

Low Sintering Temperature of Superconducting Tapes

Many studies have found itisdesirable to add small amount of silveror

silveroxide to the YBa2Cu307_ and Bi-Sr-Ca-Cu-O superconducting systems

to drastically reduce the sintering temperature, enhance resistance to

chemical degradation, and increase criticalcurrent densities.14-20 Also, since

silvercan easily transport oxygen (allowing easier oxygen diffusion from the

furnace atmosphere into the tape while containing thallium vapors), tapes

were wrapped in thin silverfoil,rather than expensive and commonly used gold

foilto prevent thallium loss to the atmosphere. However, silverreacts with

thallium superconductors close to the _normal _ sintering temperature range of



870°-920°C and drastically reduces the superconducting transition

temperature. Therefore, it was not surprising when thallium tapes wrapped in

silver foil envelopes adhered to the foil. Due to this interaction, it was found

that areas of the tapes were nonsuperconducting.

In order to circumvent the difficulties associated with silver-thallium

reactivity, a low temperature, long soak sintering schedule was examined.

While the heating schedule is uncommon, a previous study has found partial

melting of the ceramic upon sintering is not needed to form appreciable

amounts of the high temperature T1-2223 phase if sintered at 740-800°C for

extended times. It was believed sintering at low temperatures could enhance

reproducibility (since partial melting and substantial thallium loss would not

occur) while allowing the less expensive silver wrap to be used.

Figure 21 shows transition temperature curves for thallium tapes fired

at 745°C for times between 12 to 48 hours. It is evident that increasing soak

time increases transition temperatures. Figures 22 and 23 exhibit a similar

trend for sintering temperatures of 760°C and 775°C. Also, increasing the

sintering temperature increases the superconducting transition temperature.

However, at 800°C, the curves of Figure 24show that the transition

temperatures decrease with increasing soak times. The relationship of longer

soak time trends and an optimum sintering temperature is in accordance with

the previously cited study of low temperature sintering of thallium

superconductors, except the optimized temperature in this study was found to

be close to 775°C instead of 760°C. The highest transition temperature found

for tapes was l llK. This is comparable to transition temperatures of T1-

diffused tapes and films found in the literature.

Figure 25 shows resistance versus temperature curves for low

temperature sintered tapes with binder burnoff rates of 2°C/min and 3°C/min.

The tape with a slower burnoffrate exhibited a significantly lower transition

temperature of 100K than the rapid binder burnofftape, ll0I_ Repeated

processing runs showed the slowly burned-offtapes produced consistently

lower transition temperatures.

Slowly burned-offtapes were extremely fragile compared to quickly

heated tapes. Density measurements of slowly ramped tapes had a low

density of 3.42 g/cm 3 (determined by Archimedes method); while quickly

burned-off tapes had densities of 4.33 g/cm 3. Density of tapes heated at

3°C/rain probably became higher due to the red-hot heating by the exothermic



reaction during binder burnoff. Partial sample melting during the exothermic

reaction could have increased strength and density. Since tapes heated at

2°C/min did not seemto give rise to an exothermic reaction and the sintering
temperature is much lower than the melting point; ceramic consolidation is not

effective and tapes did not acquire much strength. Another, important
consideration is the quickly burned-offtapes probably had less thallium than

slowly heated tapes due volatilization of the thallium during the exothermic

reaction. Several studies of bulk materials have found that a greater amount
of T1-2223can be formed when batched to deficient thallium concentrations.

Thallium Superconductor Grounding Strap Link Fabrication

Thallium superconductor tapes were encapsulated in a resin binder

similar to the method of Haertling and Hsi. 2o It is known that 123, Bi-, and T1-

superconductors exhibit similar thermal expansion, approximately 7x10-eK - as

determined by x-ray diffraction. It was anticipated that since 123 and T1-

suerconductors exhibit similar thermal expansion, fabrication of T1-

superconductor grounding straps could be accomplished by the same method of

encapsulation. In addition, the low thermal expansion of the tapes relative to

thermal expansion of the resin, approximately 50x10-eK -, would create a

compressive stress on the tapes resulting in enhanced structural integrity and

mechanical shock resistance.

Since the tapes were fragile and easily broken, a great deal of care was

taken when removing the tapes from the silver encapsulation and soldering the

contacts to connecting pins. However once encapsulated, the superconducting

straps seemed to show greatly improved structural integrity. An encapsulated

grounding link with a transition temperature of 100K is pictured in Figure 26.

This link was sintered at 775°C for 48 hours. To date, finished grounding links

with lengths up to 3.5 inches have been fabricated.

Figure 27 shows two superconducting transition curves for thallium

grounding straps. As expected, the transition temperatures, about 95K, were

slightly lower than "bare" tapes. This was due to an artifact of the sample

holder. Due to the long tape length,a largetemperature gradientexistsin the

grounding linkwhen the sample was cooledabove the surfaceofliquidnitrogen.

Without encapsulation,smaller length tapes yieldedtransitiontemperatures

between 100 and 112K.



Ancillary Studies

Additions of Li20 to Tl2BaeCa2Cu3010

As previously mentioned, optimization of the superconducting properties

is accomplished by complete encapsulation or wrapping in an inert metal foil

and sintering in an oxygen atmosphere. Because of this added processing

constraint, lithium oxide additions to the superconductor were investigated.

Lithium has been used in ceramic processing to induce liquid phase sintering,

lower sintering temperatures, and increase the fired density of the

ceramic. 23"29 The mechanism by which lithium reduces sintering temperature

is generally ascribed to creating oxygen vacancies which increase anion

diffusionupon sintering.15 Since the correctoxygen distributioniscriticalto

cream a high temperature superconductor,itwas thought small

concentrationsoflithiumwillreduce sinteringtemperatures, thereby reducing

thallium volatilityat sinteringtemperatures, while possiblyimproving the

electricalpropertiesofthe superconductor.

A literature review of alkali metal and lithium additions to

superconductors shows a series of papers by Kawai, et. al. 16,17,18 in which

lithium added Bi2Sr2CaCu208 acts as a sintering aid. It was found that up to

40% of the copper could be replaced by lithium to dramatically reduce the

sintering temperature to 710°C while improving phase purity and increasing

the transition temperature from 80K to 91K. The increased transition

temperature is particularly remarkable since gross substitutions of lithium for

copper yielded a transition temperature comparable to the highest values

reported for this compound.

In our investigation, 1.0, 3.3, and 6.7 mole percent substitutions of

lithium for copper were added by calcining BaO2, CaO, CuO, and LiO2 for 24

hours at 920°t2 with three intermediate grindings. Thallic oxide was added to

the calcined powder and mixed in a mortar and pestle. Formation of the green

pellets was carried out in the same manner as described previously. The

pellets were wrapped in silver foil and sintered in flowing oxygen at 900°C for

30, 60, and 90 minutes.

As evident in Figure 28, increasing amounts of lithium increases the

critical transition temperature. Sintering for only one-half hour resulted in a

transition temperature of 108.8K for the highest lithium concentration. A

transition of 115.7K, Figure 29, occurs when sintering at the lowest lithium



concentration for one hour. Higher concentrations of lithium resulted in a

melted, nonsuperconducting sample for this soak time. Also, soak times of one

and one-half hour resulted in melted, nonsuperconducting samples for all

lithium concentrations.

This study suggests superconducting properties can be improved with

lithium additions. Furthermore, sample melting containing higher lithium

concentrations and longer sintering times suggest lithium produces a strong

fluxing action as expected. Since the previous studies by Kawai et. al. indicate

large substitutions of lithium for copper steadily improve the superconducting

properties and reduce sintering temperature (these are much greater lithium

concentrations than the amounts used in this study), it is possible improved

superconductors and more reliable processing (due to lower thallium volatility

at lower temperature) can be developed.

Additions of Mn02 to Tl2Ba2Ca2Cu30 w

In an attempt to further improve upon the processing procedure and

electrical properties of thallium superconductors manganese substitutions for

copper were investigated. It was hoped that manganese would increase oxygen

diffusivity while sintering, yielding improved superconductor properties.

It is well-known in the capacitor industry that small additions of

manganese to perovskite-based capacitor compositions can enhance

densification and dramatically increase resistivity.30-32 A complete

understanding of the mechanism by which manganese accomplishes this effect

is not yet known. Since manganese ions can easily undergo redox reactions, a

partial explanation may be due to enhanced anion diffusivity stemming from

the ease in which manganese can change its oxidation state to accomodate

oxygen/oxygen vacancy diffusion in the lattice while sintering.

Optimizing anion distribution in the perovskite sublattice is critical in

attaining good electrical properties for high temperature superconductors; this

similarity suggests manganese substitutions for copper could improve

superconducting properties. Previous papers found manganese substitutions

for copper do not degraded or only slightly degraded the transition temperature.

However, manganese/copper substitutions in these studies were an order-of-

magnitude higher than typical manganese/transition metal substitutions used

in the capacitor industry.



Superconducting ceramic pellets containing manganese substitutions

for copper were processed by the same procedure as lithium substituted

superconductors. Substitutions of manganese, in the form of MnO2, were

added in concentration of 0, 0.47, 0.93, and 1.87 mole percent for copper in the

T1-2223 formulation. Figures 30 and 31 show the dependence of the

superconducting transition temperature on manganese concentration and

soak time. In all cases, increasing the manganese concentration decreased the

transition temperature. Hence, it appears manganese produces a deleterious

effect on the transition temperature under the conditions investigated.

Superconductor Films Deposited Via Dielectrophoresis

A major impetus in research of high-temperature superconductors is to

develop superconducting films and wires for applications ranging from

microwave resonators, magnetic technology (for motors, solenoids, and

magnetic shields), and electrical conduction lines. Although a large number of

investigations have examined physical properties and fabrication methods of

superconducting films and wires, there are only a few methods with the

potential for large scale production. A number of methods such as laser

ablation and melt texturing have produced films with excellent homogeneity,

transition temperatures, and critical current densities for a variety of

superconducting compounds. However because these techniques are costly

and somewhat difficult to apply to long-length wire fabrication, they will

probably not be used in most superconductor manufacturing methods.

An extremely simple and low cost coating method which has been

studied in many disciplines is electrophoresis. In this method, particles which

become charged in solution deposit on the anode or cathode depending on the

surface charge. Many studies have applied electrophoresis to superconducting

coatings, yet strongly oriented films have not been produced by simple

electrophoretic deposition. 33-35 Only if the material is doped with rare-earth

ions and subjected to high magnetic fields, on the order of 8 tesla, will

electrophoresis produce preferred orientation in films.

One technique which has not been investigated to date is

dielectrophoretic deposition of superconducting films. In this method, a slurry

of superconducting powder and a low conductivity liquid is subjected to a high,

nonuniform electric field. 3e Under these conditions the superconducting grains

in the slurry can develop a dipole and migrate to the region with the greatest



field intensity. If a diverging field was created around a wire electrode, e.g. a

wire electrode in the center of cylindrical, counter-electrode, the suspension of

the superconducting particles will migrate to and deposit on the wire electrode.

The method of deposition is similar to electrophoretic deposition in that

suspended particles migrate to an electrode under the presence of an electric

field. Yet, more restrictive conditions of high, nonuniform electric fields allow

the weak dielectric mechanism to arise.

In most systems, dielectrophoresis is a mild effect compared to

electrophoresis. Yet, the utility of the dielectrophoretic technique arises from

anisotropy inherent in certain particles and the consequent orientation of the

particles in a strong electric field. Quite often a dielectrophoretically deposited

coating exhibits a strong preferred orientation. Since the axis with the highest

permittivity is along the c-axis in a superconductor crystal, it is possible that a

c-axis orientation perpendicular to the axis of the wire could be created in

dielectrophoretically deposited superconductor coatings. If this method were

developed, it could have the potential to be a straightforward, low- cost,

fabrication method of fabricating superconducting wires and conduction lines.

Before the research is presented it worthwhile to compare and contrast

dielectrophoresis with its well-known counterpart, electrophoresis. As shown

in Table 4, electrophoresis can occur in a uniform or nonuniform field and could

be used to create coatings on wires, plates, or substrates of virtually any

configuration. However, due to the necessary condition of a diverging electric

field, dielectrophoretic coatings only occur on electrode configurations which

give rise to a nonuniform electric field.

In order to create chemically uniform powders, Bi-Pb-Ca-Sr-Cu-O

superconducting powders were synthesized by the acetate process detailed in

the bismuth-based superconductor investigation (first part) of this final report.

Since aggregated or agglomerated particles usually do not create

dielectrophoretic depositions due to the random orientation of the attached

particles, it was necessary to disperse single crystals in a liquid. To obtain

single crystals, the powder was ground in a mortar and pestle and passed

through 400 mesh. Approximately 0.6 grams of the 123 superconductor

powder were added to n-butanol and sonicated for 5 minutes. The suspension

was lef_ undisturbed for 10 hours. After allowing the more massive particles to

settle, the suspension was decanted and dried. Scanning electron microscopy,

Figure 32, found the particles which settled to the bottom were large



aggregates while those which remained in suspension had a particle size less

than one micron. These fine dried particles were used to study

dielectrophoretic deposition.

A number of solutions were examined under an applied electric field to

assess the potential as the suspending fluid. Most of the liquids examined, i.e.

toluene, trichloroethylene, acetone, alpha-terpineol, distilled/deionized water, n-

butanol, and other alcohols, were too conductive to be utilized for

dielectrophoresis without further purification. Also, when electrophoretic or

dielectrophoretic deposition was performed with various oils, particles would

not adhere to the substrate. The best candidate for dielectrophoresis

applications was 1,1,2-trichlorotrifluoroethane. The liquid was highly resistive,

hydrophobic, and created good particle/substrate adherence.

As previously explained, the electrode setup must produce a nonuniform

field for dielectrophoretic depositions to occur. The outer electrode was a hollow

copper cylinder 1.5 cm in diameter and had a length of 3 cm. The central silver

wire electrode had a uniform diameter of 230 microns. To suspend the powder

in the 30 ml of the cholorofluorocarbon liquid, a small drop of Triton X-100 was

added to approximately 0.15 grams of fine powder followed by sonication for

five minutes.

A voltage of 5,000 V was applied to the suspension producing a current

of less than 1 mA. Deposition was performed for 5 minutes. Afar deposition,

the particles remained on the wire. The wire was removed for examination

with a scanning electronmicroscope Figure 33. Upon examination ofthe

photomicrograph, the particlelayerwas approximately eightmicrons thicl_

ARer sinteringat 845°C for 12 hours, a significantamount ofparticle

orientationon the wire as exhibitedin the SEM photomicrograph in Figure 34.

Afar removing the wire,another silverwire ofthe same diameter was

inserted.Again the same voltagewas appliedand a depositionoccurred. Then

the wire was cleaned,replaced,and subjectedto the same conditionsbut with

the electrodesofoppositepolarity.Again depositionoccurred when opposite

polaritywas applied.Finally,both the cylindercounter electrodeand the inner

wire electrodewere replaced with two 0.25 cm by 4 cm parallelsheetsof silver

foil.Voltages from 500 to6,000 V were applied. With parallelplateelectrodes,

no depositionoccurred at any voltage.

The above observationsstronglysuggest that the filmswere

dielectrophoreticallydeposited.With the cylinderand wire configuration,



deposition occurred on the wire regardless of polarity. However, no deposition

occurred in the parallel plate electrode configuration. This is to be expected

since the relatively uniform field created by the parallel plates will not give rise

to dielectrophoretic deposition.

Aqueous Processing of YBa2Cu307.8

It is well-known that YBa2Cu307-_ readily reacts with water to produce

a nonsuperconducting article in a short time. However, it would be desirable to

develop a method of milling 123 powders in water prior to the ceramic forming

process. This would eliminate more costly, organic solvents used for milling

while reducing safety hazards.

The 123 phase readily undergoes decomposition via the reaction

mechanism:

2YBa2Cu307-_ + 3H20--> Y2BaCuO5 + 3Ba(OH)2 + 5CuO + (0.5-x)O2.

Barium hydroxide is somewhat soluble in water and increases the alkalinity of

water. During this reaction, the formal valence of Cu changes from +2.3 to +2.

Since high-temperature superconductors are extremely sensitive to the

valence of copper, a small amount of barium leached into solution can destroy

the superconductivity. If dissolved CO2 is present in the water in the form of

carbonic acid, Ba(OH)2 further reacts to form BaCO3 by the following reaction:

Ba(OH)2 + CO2 --> BaCO3 + H20.

The reaction products are indicated by white crystals on the ceramic or powder

surface.

To reduce these reactions in water, silane additions to water were

examined. Silanes are compounds with the general formula SinH2n+2 and are

analogous to alkanes. Often, these are coupled with organic functional groups.

These compounds are known to readily react with many oxide surfaces to

create hydrophobic layers. When placed in an aqueous system, silanes

effectively compete with water molecules for surface bonding states and form

bridging siloxane bonds, -O-SiR2, to the oxygen on the particle surface.

Because of the potential of silanes reducing water/superconductor contact

while not destroying superconductivity, a preliminary examination was

undertaken to examine the effectiveness ofsilanes for aqueous milling 123

powders. Superconducting powders were fabricated by a process outlined

previously. However instead of a final milling in t_ichloroethylene prior to



forming, ceramic powders were milled in either 1,1,2-trichlorotrifluoroethane or

water or water mixed with silanes.

Since the formation of barium hydroxide in an aqueous system increases

alkalinity, the pH of the water was measured during ball-milling. Milling was

performed in a nalgene bottle with zirconia media. Several batches of 75 gram

123 powder and 150 mL of water or a water/silane solution were examined for

silane effects and reproducibility. Two and five weight percent (of the total

solvent weight) silane concentrations were added to water in the mill.

Superconducting powder was added immediately a_r silane additions. Also, in

one 2 percent batch, silane was added to water and allowed to sit for 36 hours

before the powder was added. A_r this time, the solution appeared slightly

hazy. Then 75 grams of 123 powder were added to solution and milled.

Initial pH values of distilled water were approximately 5.5; silane

additions produced no detectable effect on the initial pH. This is a typical value

for water which has absorbed CO2. Yet within a few minutes of milling, water

basicity increased to 12. This is indicative of a rapid reaction of barium with

water. After five minutes, pH stabilized and remained constant during the

remaining milling time. Alkalinity was also seen to increase within a few

minutes with silane additions, yet pH increased only to 9.0 and stabilized.

Milling in two and five percent silane yielded similar and reproducible pH

curves. However, when silane was allowed to age in solution before adding

powder, pH values slowly climbed to 11 when milled.

Alter grinding, the suspension was placed in a dryer for 16 hours. A

thick layer of white crystals and blue-green crystals,indicating decomposition

of 123 to Ba(OH)2 and Cu20 was evident in the superconducting powder milled

in water. A similar layer of crystals was noted in the solution which was

allowed to sit36 hours before grinding. Yet, milling in the water/silane solutions

with powder immediately added showed only a small amount of these

decomposition products.

The smaller pH change and small amount of white crystals after drying

suggests silanes markedly reduce decomposition of 123 in water. Also itwas

evident that silane treatments produced much finer powders than milling in the

organic solvent. The fine grain size could possibly be due to reduction of

agglomeration by a silane layer.

The green bodies were sintered at 900°C for 5 hours and annealed at

450°C for 12 hours. Alter firing,pelletswere cooled to liquid nitrogen



temperature and checked for the Meissner effect. Pellets made from powder

milled in water or the aged silane/water mixture did not levitate a three gram

Sm-Co magnet. However, grinding in organic solvent or silane/water solutions

did lii_ the magnet off the surface. Apparently, silanes did effectively check the

release of Ba 2+ in water.

Resistance transition temperature curves were plotted for the ceramics.

Superconducting transition temperatures were severely degraded for powders

milled in water compared to milling in an organic (transition temperatures were

only slightly above 77K compared to approximately 90K when milled in an

organic). However, milling in a silane/water solution also seriously degraded the

resistance transition, approximately 82K. At first, this was considered

surprising since silanes appeared to limit the superconductor decomposition

(suggested by lower pH values, less decomposition products evident upon

drying, and the Meissner effect) yet, upon reflection, this might be expected.

Silanes reduce surface reactions and protect the particle core in an aqueous

system. A previous study found C02 reacts with 123 upon sintering to form

BaCO3 or the barium oxycarbonate BaCO4.8. 9 These reaction products reside

at the grain boundary without appreciable diffusion of carbon into the grain.

Since silanes coat the particle surface, carbon can be expected to reside at the

grain boundaries. Therefore a ceramic pellet can exhibit a strong Meissner

effect while producing a poor resistive transition due to the presence of

intergranular phases.



Summary

Thallium-based superconductors grounding straps have been fabricated for

the NASA SAFIRE project. An outline of the optimized processing steps found in

this investigation for fabricating the is described below.

•Thallium must be reacted with the Ba2Ca2Cu30 7 precursors before tape casting

with binder. The compound Ba2Ca2Cu307 was formed when BaO2, CaO, and

CuO were mixed in stoichiometric amounts and fired at 925°C for 24 hours.

Thallic oxide and Ba2Ca2Cu30 7 were mixed in a mortar and pestle and pelletized.

The pressed pellets were encapsulated in silver foil and calcined at 880°C for one
hour.

•After mixing, the superconductor composition was ground and passed through

a 400 mesh sieve to produce a free powder.

•Thirty weight percent binder mixed with the superconductor powder. The

slurry was placed in a slight vacuum for ten minutes and allowed to sit and defoam
for 20 minutes in a sealed container.

•A 50 mil green tape was cast by a single edge doctor-blade and allowed to dry.

Tapes were cut to desired width and length.

•Binder burnout was performed in an oxygen atmosphere. The tape was heated

at 2°C/min with a final soak of 550°C for 90 minutes.

•After burnout, tapes were carefully encapsulated in silver foil and fired at 775°C
for a 48 hour soak.

•Sintered tapes were removed from the foil and electroded with silver electrode

paste at 600°C.

•Tapes were placed on rigid plastic substrates, soldered to connecting pins, and

encapsulated with epoxy resin.

The highest superconducting transition temperature of a thallium tape was

found to be 100K. The low transition temperature of the tape is believed to be due

to thermal gradients when cooled above the surface of liquid nitrogen. Smaller

tapes which were shorter and not encapsulated (hence not subjected to large

thermal gradi¢nts) yielded transition temperatures in the range of 100-112K.

Ancillary studies investigated lithium and manganese substitutions,

dielectrophoretic deposition, and aqueous milling with silanes. The findings of
these studies are outlined below.

•Lithium was substituted for copper in the T1-2223 composition in the form of

Li20. Lithium additions exhibited a fluxing action upon sintermg. Also,

superconducting transition temperature increased up to x=0.2 in the formula

T12Ba2Ca2Cu3-xLix O 10- For lithium substitutions greater than 0.2 the maximum

superconducting temperature decreased.



•Manganesewas substitutedfor copper in the T1-2223composition in the form
of MnO 2. Manganeseadditions decreasedthe superconductingtemperaturesfor
all concentrations studied.

•Dielectrophoretic depositionsof BSCCO superconductorswere investigated.
Applying a non uniform electric field to a suspensionof fine, unaggregated
BSCCO particles in 1,1,2-trichlortfifluoroethane produceddepositions by
dielectrophoresis. Scanningelectronmicroscopy suggestedpreferred particle
orientation on a silver wire substrate.

•Aqueous milling of YBa2Cu307.,3wasstudied with silane additions. Silanes
appearedto protect particle surfacesfrom reaction with water. However while
milling with silanesproducedpellets with a moderatelystrong Meissner effect,
superconductingtransitions degraded. It was suggestedthat this may be due to
carbonateformation on the grain surfacedueto decompositionof the silane when
fh'ed.
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Table 1

Critical superconducting temperature of the nominal composition

T12Ba2Ca2Cu3010 as a function of sintering time and temperature.

Powders used for sintering: T1203, BaO2, CaO, CuO.

Sintering
Temperature 870°C 880°C 890°C 900°C

Soak
Time

30 min 97.5K 98.2K 98.3K 104.4K

60 min 103.7K 103.1K 102.6K 102.9K

120 min 104.4K 104.3K 104.9K 107.1K

180 min 104.6K 103.4K 112.3K 104.3K



Table 2

Critical superconducting temperature of the nominal composition

T12Ba2Ca2Cu3Olo as a function of sintering time and temperature.

Powders used for sintering: T1203, BaO2, Ca2Cu305.

Sintering
Temperature 870°(:: 880°C 890°C 900°C

Soak
T'tme

30 min 96.8K 99.9K 99.2K 104.0K

60 min 103.7K 106.8K 102.0K 106.2K

120 min 102.0K 103.6K 103.5K 110.9K

180 min 107.4K 102.9K 109.8K 117.8K



Table 3

Critical superconducting temperature of the nominal composition

T12Ba2Ca2Cu3Olo as a function of sintering time and temperature.

Powders used for sintering: T1203, Ba2Ca2Cu307.

Sintering
Temperature 870°C 880°C 890°(:: 900°(::

Soak
Time

30 min X X X 105.9K

60 min 96.7K 96.4K 96.5K 105.2K

120 min 96.0K 104.0K 114.8K 107.3K

180 min 102.6K 105.2K ..............



Table 4

A Comoarison of DielectroDhoresis and ElectroDhoresis

Dielectrophoresis

Dielectrophoresis arises from the tendency of matter to become

polarized and move into regions of highest field strength. Some of

the characteristics of dielectrophoresis are summarized below.

1. Produces motion of the particles in which the direction if motion

is independent of the direction of the field, i.e., either dc or ac

voltages can be employed.

2. Should be observable most readily in relatively coarse

suspensions.

3. Requires highly divergent fields. No motion should be observed

in the nondivergent field between centers of parallel plates, for
example.

4. Requires relatively high field strengths.

5. Would be most apparent in fluids of low viscosity.

6. Will deposit weights of the particles in direct proportion to the

voltage applied in equal times of deposition.

7. Is in general a weak effect easily observable only in strong fields

and with coarse particles.

Electrophoresis

Electrophoresis arises from the electrostatic attraction of

charged electrodes for charged particles. The direct action of an

electric field on charged particles produces a different set of

phenomena when compared to dielectrophoresis.

1. Produces motion of the particles in which the direction of the

motion is dependent on the direction of the field. Reversal of the

field reverses the direction of travel.

2. The phenomenon is observable with particles of any molecular
size.

3. Operates in either divergent or uniform fields.

4. Requires relatively low voltages.

5. Requires relatively small charges per unit volume of the particles.
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Figure 1

Commonly Appearing Superconducting Phases.

a) TI2Ba2CuO 6 [Tc=85K ]

b) T12Ba2CaCu208 [Tc=IIOK ]

c) T12Ba2Ca2C u3010 [To =120K]
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Batch I

Mix Stolchiometric Amounts

of Tl203, BaO2. CaO. and CuO

in a Morlar and Pestle.

Batch 11

Mix Stolchlometrlc

Amounts ot CaO

CuO in a Morlar _ Pestle

Calcine at 92§'C for

24 houm wtth Two

InlermeCila_ Grmdingl

Batch ITI

Mix St oichiometrlc

Amounts of BaC_. CaO. and

CuO In & Mortar and Pestle

Mix Stolchlometrlc

Amounte ot TI203 and

Ba02 _ Calcln_l Ca2Cu306

In a Mortar and PqN, le

1
I Flash-Fire Silver Wrlpc_d I

I Electrode with Sliver Paste

600"C, 20 Minutes

Cool with Fum&ce

MIx Stolchlometrlc

Amounts

of TI203 w_th C&lan_:l

Ba2Ca2Cu307

Figure 2

Flow Sheet of Three Methods of Forming a Superconductor
Ceramic with the Nominal Composition T12Ba2Ca2 Cu3010
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1500 MAGNIFICATION

Figure 3

SEM Photomicrographs of As-Fired Surfaces.

Pellets Batched with T1203, BaO , CaO, and CuO

a) fired at 870°C for three hours

b) fired at 890°C for three hours.



0
7O

i i i i i ! i i i i ! i : i i i i i
• : . , . .

...... ! ...... i...... ,...... ".'...... - ..... r ..... ÷ ...... _...... _...... ! ...... i ...... i ...... _...... _...... :...... :...... :- ...... ,...... -_..... - ...... : ...... _...... l ......

i i i _ _ ; i _ i i i i i i i i
......i......i....................i............T.............i....................i.............}............._.................:_....._:......t:......:i...........

i i i i i iiii !
...... _...... _............. : ...... _...... : ....... :"............. _...... : ...... :...... ' ............ :...... '....... :...... ":...... _...... !....... _...... ; ...... i .............

i : ! ! : : i !
...... i..................... i....... !....... i....... i ............. _...... , ...... i ...... _............ _....... :....... i....... !.............. i....... i....... ;.................=

! i ! :: i i i i :: i i i :: i

......"..........................:, i i i i
....... i....... i ...... i ...... i ............. i...... i...... ".....

i i i i i _i i i i l i i lii

100 150 200 250 300
Temporature (I_3

Figuum 4

Resistance as a Function of Temperature for a Pellet

Batched by T1203,BaO2, CaO, CuO. Fired for One Hour at 880°C.
Discontinuities indicate cracking. [Tc=104-4K]
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1500 MAGNIFICATION

Figure 5

SEM Photomicrographs of Fractured Surface
Ceramic Pellets Batched with T1203,BaO2, CaO, CuO

a) fired at 870°C for three hours

b) fired at 890°C for three hours
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X-Ray Diffraction Profiles of Ceramic

Samples Batched with T1203, BaO2, and Ca2Cu305

a) fired at 900°C for 180 minutes

b) fired at 900°C for 30 minutes
c) fired at 880°C for 180 minutes
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Figure 7

Resistance as a Function of Temperature for a Ceramic Sample

Batched with TI203, BaO 2, and Ca2Cu305.

Sintered at 900°C for Three Hours [Tc=117.8K].



21.62 g [ 19.54 g 28.86 g

Ba(NO3)2°H20 i Ca(NO3)2°H20 Cu(NO3)2°H20

I Precipitate with 39 g of
Oxalic Acid and Adjust pH
to 4.5 with conc. NH4OH

I

Dry at 100°C for 15
hours

Pyrolyze at 600°C
for 2 hours

Add TI203 to

coprecipitated powder
and ball mill

Continue processing under
the same conditions as oxide

powders

Figure 8

Schematic of the Oxalate Coprecipitation Process
Used to Make Thallium Superconductors
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Figure 9

cannmo Electron Micrographs and Energy Dispersive X-Ray Analysis

Mappings of As-Fired Surface of a Thallium Superconductor Pellet
Sintered at 893°C for Two Hours--Oxide Precursors

Final Magnification after Copying--1000X

a) SEM Photomicrograph

b) SEM Photomicrograph and EDX Mappings of TI, Ba, and Cu

c) SEM Photomicrograph and EDX Mappings of TI, Ba, and Ca
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Figure 10

Resistance as a Function of Temperature for Ceramic Pellets

Made with Coprecipitated Powder

Nominal Composition of the Powder: T12Ba2Ca2Cu3010

a) 30 Minute Soak at 893°C (Nonsuperconducting at 77K)

b) 60 Minute Soak at 893°C (Nonsuperconducting at 77K)

c) 120 Minute Soak at 893°C (Nonsuperconducting at 77K)
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Figure 11

3canning Electron Micrographs and Energy Dispersive X-Ray Analysis

Mappings of As-Fired Surface of a Thallium Superconductor Pellet

Sintered at 893°C for Two Hours--Coprecipitated Precursors

Final Magnification after Copying--1000X

a) SEM Photomicrograph

b) SEM Photomicrograph and EDX Mappings of TI a,ad Cu

(Ba and Ca are not present in the area shown)



Figure 12

SEM Photomicrograph of a Post-Binder Burnout Tape

Powders Mixed with Binder: T1203 and Ba2Ca2Cu30 7

(sieved through 60 mesh)
Ramp: 5°C/min, 550°C Max., One Hour Soak.

400X
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Figure 13

Thermogravimatric Analysis of Binder Used for Tape Casting.

Air Purged-Rate l°C/min.



a) Ramp 2°C/rain to 550°C. Soak for Two Hours.

b) Ramp 12°C/min to 550°C. Soak for Two Hours.

Figure 14

SEM Photomicrographs nf Post-Binder Burnout Tapes.

Nominal Composition of Prc_'ursor Powder T12Ba2Ca2Cu3010.
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Figure 15

Resistance as a Function of Temperature for Ceramic Tapes.

Nominal Composition of the Powder: T12Ba2Ca2Cu3010

a) 5°C/rain Binder Burnout Rate--893°C, 60 Minute Soak

b) 3°C/rain Binder Burnout Rate--893°C, 60 Minute Soak
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Figure 16

Superconducting Transition Curves of Ceramic Tapes.

Nominal Composition of Precursor Powder T12Ba2Ca2Cu30 lo-
840°C Presinter--Sieved through 60 mesh.

a) 30 Minute Soak at 890°C (Nonsuperconducting at 77.7K)
b) 60 Minute Soak at 890°C (Nonsuperconducting at 77.7K)
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Figure 17

Superconducting Transition Curves of Ceramic Tapes.

Nominal Composition of Precursor Powder TI2Ba2Ca2Cu3Olo.
840°C Presinter--Sieved through 400 mesh.

a) 30 Minute Soak at 890°C (Nonsuperconducting at 77.7K)
b) 60 Minute Soak at 890°C (Nonsuperconducting at 77.7K)

c) 120 Minute Soak at 890°C (Tc=97.3 at 1 mA)



a) Precursor Powder Sieved Through 60 Mesh

b) Precursor Powder Sieved Through 400 Mesh.

Figure 18

SEM Photomicrographs of the As-Fired Surface of Ceramic Tapes
Flash Fired at 890°C for 30 Minutes.

Nominal Composition of PCe_ _;Csor Powder T12Ba2Ca2Cu3Olo.
_0X
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Figure 19

Superconducting Transition Curves of Ceramic Tapes.

Nominal Composition of Precursor Powder TI2Ba2Ca2Cu3Olo.

890°C Presinter--Sieved through 60 mesh.
a) 30 Minute Soak at 890°C (Nonsuperconducting at 77.7K)

b) 60 Minute Soak at 890°C (Tc=90.7K at 100 mA)
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Figure 20

Superconducting Transition Curves of Ceramic Tapes.

Nominal Composition of Precursor Powder T12Ba2Ca2Cu3Olo-

890°C Presinter--Sieved through 400 mesh.

a) 30 Minute Soak at 890°C (Tc=96.4K at 100 mA)

b) 60 Minute Soak at 890°C (T¢=104.6K at 100 mA)

c) 120 Minute Soak at 890°C (T¢=106.5K at 100 mA)
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Figure 21

Superconducting Transition Temperature Curves of Ceramic Tapes.

Nominal Composition of Precursor Powder TI2Ba2Ca2Cu30 lO.

a) 2°C/rain Binder Burnout Rate--745°C, 12 Hour Soak

b) 2°C/rain Binder Burnout Rate--745°C, 24 Hour Soak

c) 2°C/rain Binder Burnout Rate--745°C, 48 Hour Soak
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Figure 22

Superconducting Transition Temperature Curves of Ceramic Tapes.

Nominal Composition of Precursor Powder TI2Ba2Ca2Cu3010.

a) 2°C/min Binder Burnout Rate--760°C, 24 Hour Soak

b) 2°C/min Binder Burnout Rate--760°C, 48 Hour Soak
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Figure 23

Superconducting Transition Temperature Curves of Ceramic Tapes.

Nominal Composition of Precursor Powder TI2Ba2Ca2Cu3OI0.

a) 2°C/min Binder Burnout Rate--775°C, 12 Hour Soak

b) 2°C/min Binder Burnout Rate--775°C, 24 Hour Soak

c) 2°C/min Binder Burnout tL_te--775°C, 48 Hour Soak
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Figure 24

Superconducting Transition Temperature Curves of Ceramic Tapes.

Nominal Composition of Precursor Powder T]2Ba2Ca2Cu3010.

a) 2°C/rain Binder Burnout Rate--800°C, 12 Hour Soak

b) 2°C/min Binder Burnout Rate--800°C, 24 Hour Soak

c) 2°C/min Binder Burnout Rate--800°C, 48 Hour Soak
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Figure 25

Superconducting Transition Temperature Curves of Ceramic Tapes.

Nominal Composition of Precursor Powder Tl2Ba2Ca2Cu3Olo.

a) 2°C/min Binder Burnout Rate--775°C, 48 Hour Soak

b) 3°C/rain Binder Burnout Rate-775°C, 48 Hour Soak
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Figure 26

Photograph of Thallium Superconductor Grounding Links.
Nominal Composition of Precursor Powder TI2Ba2Ca2Cu3Olo.

840°C Presinter--Sieved through 400 mesh.
2°C/rain Binder Burnout Rate--775°C, 48 Hour Soak
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Figure 27

Superconducting Transition Temperature Curves of Grounding Links.

Nominal Composition of Precursor Powder Tl2Ba2Ca2Cu3010.

840°C Presinter--Sieved through 400 mesh.

2°C/rain Binder Burnout Rate--775°C, 48 Hour Soak
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Figure 28

Resistance as a Function of Temperature for Ce_cs Batched

with TI20 3 and Ba2Ca2Cu3.x07/Li x Fired at 900°C for 30 Minutes

a) x=0.06 [Tc=93.3K]

b)x--0.10 [Tc=101.21:T]

c)x=0.20 [Tc=I08.0K]



Figure 29

Resistance as a Function of Temperature for Ceramics

Batched with T]203 andBa2Ca2Cu2.94Lio.0607 Fired at 900°C for 60 Minutes.

[Tc=llS.7K]
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Figure 30

Superconducting Transition Curves of Ceramic Pelletswith Various
Manganese Substitutions. Flash-Fired at 885°C for 30 Minutes

a) 0 mole percent Mn forCu (Tc=88.7K)

b) 0.47 mole percent Mn forCu (Tc=86.3K)

c)0.93mole percent Mn forCu (Tc=87.3K)

d) 1.87 mole percent Mn forCu (Tc=81.6K)
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Figure 31

Superconducting Transition Curves of Ceramic Pellets with Various

Manganese Substitutions. Flash-Fired at 885°C for 120 Minutes

a) 0 mole percent Mn for Cu (Tcfl08.0K)

b) 0.47 mole percent Mn for Cu (Tc=101.3K)

c) 0.93mole percent Mn for Cu (T¢=105.7K)

d) 1.87 mole percent Mn for Cu (Tc=97.4K)
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Figure 32

b)

SEM Photomicrograph of Bi-Pb-Ca-Sr-Cu-O Powders

a) Particles which had settled after 10 hours in n-butanol

Particles which were in suspension after 10 hours in n-butanol
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Figure 33

SEM Photomicrographs

a) Bare Silver Wire Before Dielectrophoretic Deposition

b) An 8 Micron Dielectrophoretic Coating on Silver Wire.

Deposition Conditions: 1.5 cm Diameter Cylindrical Counter Electrode,

Applied Voltage was 5000V for 5 Minutes in

1,1,2-Trifluoro-Trichloroethane.
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Figure 34

SEM Photomicrographs

a) Electrophoretic Deposition on Silver Foil Prior to Sintering

b) Dielectrophoretic Depostion on Silver Wire




